18F-FDG PET/CT radiomics predicts brain metastasis in I-IIIA resected Non-Small cell lung cancer

被引:3
|
作者
Zheng, Zhonghang [1 ,2 ]
Wang, Jie [1 ,2 ]
Tan, Weiyue [1 ,2 ]
Zhang, Yi [1 ,2 ]
Li, Jing [1 ,2 ]
Song, Ruiting [1 ,2 ]
Xing, Ligang [3 ]
Sun, Xiaorong [2 ]
机构
[1] Shandong First Med Univ & Shandong Acad Med Sci, Dept Grad, Jinan, Shandong, Peoples R China
[2] Shandong First Med Univ & Shandong Acad Med Sci, Shandong Canc Hosp & Inst, Dept Nucl Med, Jinan 250117, Shandong, Peoples R China
[3] Shandong First Med Univ & Shandong Acad Med Sci, Shandong Canc Hosp & Inst, Dept Radiat Oncol, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Positron emission tomography; computed; tomography; Radiomics; Brain metastases; Non-small cell lung cancer; Prediction model; PROPHYLACTIC CRANIAL IRRADIATION; RISK; EGFR; MUTATION; IMAGES;
D O I
10.1016/j.ejrad.2023.110933
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: To establish 18F-FDG PET/CT radiomics model for predicting brain metastasis in non-small cell lung cancer (NSCLC) patients.Methods: This research comprised 203 NSCLC patients who had received surgical therapy at two institutions. To identify independent predictive factors of brain metastasis, metabolic indicators, CT features, and clinical fea-tures were investigated. A prediction model was established by incorporating radiomics signature and clinico-pathological risk variables. The suggested model's performance was assessed from the perspective of discrimination, calibration, and clinical application.Results: The C-indices of the PET/CT radiomics model in the training, internal validation, and external validation cohorts were 0.911, 0.825 and 0.800, respectively. According to the multivariate analysis, neuron-specific enolase (NSE) and air bronchogram were independent risk factors for brain metastasis (BM). Furthermore, the combined model integrating radiomics and clinicopathological characteristics related to brain metastasis per-formed better in terms of prediction, with C-indices of 0.927, 0.861, and 0.860 in the training, internal vali-dation, and external validation cohorts, respectively. The decision curve analysis (DCA) suggested that the PET/ CT nomogram was clinically beneficial.Conclusions: A predictive algorithm based on PET/CT imaging information and clinicopathological features may accurately predict the probability of brain metastasis in NSCLC patients following surgery. This presented doctors with a unique technique for screening NSCLC patients at high risk of brain metastasis.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] 18F-FDG PET/CT radiomics nomogram for predicting occult lymph node metastasis of non-small cell lung cancer
    Qiao, Jianyi
    Zhang, Xin
    Du, Ming
    Wang, Pengyuan
    Xin, Jun
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [2] Preoperative prediction of mediastinal lymph node metastasis in non-small cell lung cancer based on 18F-FDG PET/CT radiomics
    Huang, Y.
    Jiang, X.
    Xu, H.
    Zhang, D.
    Liu, L. -n.
    Xia, Y. -x.
    Xu, D. -k.
    Wu, H. -j.
    Cheng, G.
    Shi, Y. -h.
    CLINICAL RADIOLOGY, 2023, 78 (01) : 8 - 17
  • [3] 18F-FDG PET/CT detects seldom and rare sites of metastasis of non-small cell lung cancer
    Ren, Shu
    Zhao, Jun
    JOURNAL OF NUCLEAR MEDICINE, 2009, 50
  • [4] A 18F-FDG PET/CT-based radiomics model predicts prognosis of synchronous oligometastatic non-small cell lung cancer.
    Zhu, Xiaoxia
    Zhang, Yu
    Zheng, Zhihao
    Luo, Jiaxiu
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [5] Prospective comparison of 18F-FDG PET/MRI and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer
    Julian Kirchner
    Lino M. Sawicki
    Felix Nensa
    Benedikt M. Schaarschmidt
    Henning Reis
    Marc Ingenwerth
    Simon Bogner
    Clemens Aigner
    Christian Buchbender
    Lale Umutlu
    Gerald Antoch
    Ken Herrmann
    Philipp Heusch
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 437 - 445
  • [6] Prospective comparison of 18F-FDG PET/MRI and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer
    Kirchner, J.
    Sawicki, L. M.
    Schaarschmidt, B. M.
    Umutlu, L.
    Herrmann, K.
    Buchbender, C.
    Antoch, G.
    Heusch, P.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S502 - S502
  • [7] Prospective comparison of 18F-FDG PET/MRI and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer
    Kirchner, Julian
    Sawicki, Lino M.
    Nensa, Felix
    Schaarschmidt, Benedikt M.
    Reis, Henning
    Ingenwerth, Marc
    Bogner, Simon
    Aigner, Clemens
    Buchbender, Christian
    Umutlu, Lale
    Antoch, Gerald
    Herrmann, Ken
    Heusch, Philipp
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (02) : 437 - 445
  • [8] Effects of Tracer Uptake Time in Non-Small Cell Lung Cancer 18F-FDG PET Radiomics
    Kolinger, Guilherme D.
    Garc, David Vallez
    Kramer, Gerbrand Maria
    Frings, Virginie
    Zwezerijnen, Gerben J. C.
    Smit, Egbert F.
    de Langen, Adrianus Johannes
    Buvat, Irene
    Boellaard, Ronald
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (06) : 919 - 924
  • [9] Pre-treatment 18F-FDG PET-based radiomics predict survival in resected non-small cell lung cancer
    Ahn, H. K.
    Lee, H.
    Kim, S. G.
    Hyun, S. H.
    CLINICAL RADIOLOGY, 2019, 74 (06) : 467 - 473
  • [10] Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer with 18F-FDG PET/CT images
    Zhu, Yuan
    Cong, Shan
    Zhang, Qiyang
    Huang, Zhenxing
    Yao, Xiaohui
    Cheng, You
    Liang, Dong
    Hu, Zhanli
    Shao, Dan
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (06):