Application of low flow rate micro gas cell nozzle in laser wakefield acceleration*

被引:2
|
作者
Xiao-Hui, Zhang [1 ]
Yu-Chi, Wu [1 ]
Bin, Zhu [1 ]
Shao-Yi, Wang [1 ]
Yong-Hong, Yan [1 ]
Fang, Tan [1 ]
Ming-Hai, Yu [1 ]
Yue, Yang [1 ]
Gang, Li [1 ]
Jie, Zhang [1 ]
Jia-Xing, Wen [1 ]
Wei-Min, Zhou [1 ]
Jing-Qin, Su [1 ]
Yu-Qiu, Gu [1 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Sci & Technol Plasma Phys Lab, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
laser wakefield acceleration; high repetition rate; micro gas cell; ELECTRONS; BEAMS;
D O I
10.7498/aps.72.20221868
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
After forty-year tremendous advances, laser wakefield acceleration (LWFA), in which an ultra-intense femtosecond laser interacts with a gas target to produce energetic electrons, is becoming more and more mature. Acceleration with a high repetition rate will be an important topic in the near future. When operating at a high repetition rate, the influence of the gas load on the vacuum system cannot be neglected. Among the widely used gas targets, gas cells have a lower flow rate than supersonic gas nozzles. However, most of gas cells are several centimeters long, unsuitable for a moderate-size laser facility. In this work, we design a kind of micro gas cell with a sub-centimeter length. The flow rate of the micro gas cell and the supersonic nozzle are compared by hydromechanics simulations. Comparing with the supersonic nozzle, the flow rate of the micro gas cell is reduced by 97%. Moreover, the gas cell sustains a longer flattop region. The reduced flow rate is attributed to two reasons. The first reason is that the area of the nozzle exit decreases significantly. In the case of the supersonic nozzle, the laser interacts with the gas jet outside the nozzle exit. Therefore, the exit size is determined by the interaction length. In the case of the micro gas cell, the laser interacts with the gas inside the gas cell. The exit only needs to be larger than the laser focal, which is much smaller than the interaction length. The second reason is that the velocity of the gas jet decreases. When using a supersonic nozzle, the velocity at the nozzle exit must be high enough to generate a flattop density distribution, which is required by LWFA. As a comparison, in the micro gas cell, the gas is confined by the cell wall. As a consequence, the gas velocity has little influence on the density distribution inside the cell. By changing the inner radius of the cell, 1-4 mm-long flattop regions can be generated while keeping a low flow rate. Experiments using the micro gas cell are conducted on a 45 TW femtosecond laser facility at the Laser Fusion Research Center. The stable electron beams with maximum energy of 250 MeV are generated. This study will contribute to the investigation of stable and high-frequency laser wakefield acceleration.
引用
收藏
页数:7
相关论文
共 23 条
  • [1] Shock-Front Injector for High-Quality Laser-Plasma Acceleration
    Buck, A.
    Wenz, J.
    Xu, J.
    Khrennikov, K.
    Schmid, K.
    Heigoldt, M.
    Mikhailova, J. M.
    Geissler, M.
    Shen, B.
    Krausz, F.
    Karsch, S.
    Veisz, L.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (18)
  • [2] Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection
    Clayton, C. E.
    Ralph, J. E.
    Albert, F.
    Fonseca, R. A.
    Glenzer, S. H.
    Joshi, C.
    Lu, W.
    Marsh, K. A.
    Martins, S. F.
    Mori, W. B.
    Pak, A.
    Tsung, F. S.
    Pollock, B. B.
    Ross, J. S.
    Silva, L. O.
    Froula, D. H.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [3] High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source
    Cole, Jason M.
    Symes, Daniel R.
    Lopes, Nelson C.
    Wood, Jonathan C.
    Poder, Kristjan
    Alatabi, Saleh
    Botchway, Stanley W.
    Foster, Peta S.
    Gratton, Sarah
    Johnson, Sara
    Kamperidis, Christos
    Kononenko, Olena
    De lazzari, Michael
    Palmer, Charlotte A. J.
    Rusby, Dean
    Sanderson, Jeremy
    Sandholzer, Michael
    Sarri, Gianluca
    Szoke-Kovacs, Zsombor
    Teboul, Lydia
    Thompson, James M.
    Warwick, Jonathan R.
    Westerberg, Henrik
    Hill, Mark A.
    Norris, Dominic P.
    Mangles, Stuart P. D.
    Najmudin, Zulfikar
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) : 6335 - 6340
  • [4] 3D printing of gas jet nozzles for laser-plasma accelerators
    Dopp, A.
    Guillaume, E.
    Thaury, C.
    Gautier, J.
    Phuoc, K. Ta
    Malka, V.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (07):
  • [5] A laser-plasma accelerator producing monoenergetic electron beams
    Faure, J
    Glinec, Y
    Pukhov, A
    Kiselev, S
    Gordienko, S
    Lefebvre, E
    Rousseau, JP
    Burgy, F
    Malka, V
    [J]. NATURE, 2004, 431 (7008) : 541 - 544
  • [6] High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding
    Geddes, CGR
    Toth, C
    van Tilborg, J
    Esarey, E
    Schroeder, CB
    Bruhwiler, D
    Nieter, C
    Cary, J
    Leemans, WP
    [J]. NATURE, 2004, 431 (7008) : 538 - 541
  • [7] Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide
    Gonsalves, A. J.
    Nakamura, K.
    Daniels, J.
    Benedetti, C.
    Pieronek, C.
    de Raadt, T. C. H.
    Steinke, S.
    Bin, J. H.
    Bulanov, S. S.
    van Tilborg, J.
    Geddes, C. G. R.
    Schroeder, C. B.
    Toth, Cs.
    Esarey, E.
    Swanson, K.
    Fan-Chiang, L.
    Bagdasarov, G.
    Bobrova, N.
    Gasilov, V.
    Korn, G.
    Sasorov, P.
    Leemans, W. P.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (08)
  • [8] Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses
    Kim, Hyung Taek
    Pathak, V. B.
    Pae, Ki Hong
    Lifschitz, A.
    Sylla, F.
    Shin, Jung Hun
    Hojbota, C.
    Lee, Seong Ku
    Sung, Jae Hee
    Lee, Hwang Woon
    Guillaume, E.
    Thaury, C.
    Nakajima, Kazuhisa
    Vieira, J.
    Silva, L. O.
    Malka, V.
    Nam, Chang Hee
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [9] Enhancement of Electron Energy to the Multi-GeV Regime by a Dual-Stage Laser-Wakefield Accelerator Pumped by Petawatt Laser Pulses
    Kim, Hyung Taek
    Pae, Ki Hong
    Cha, Hyuk Jin
    Kim, I. Jong
    Yu, Tae Jun
    Sung, Jae Hee
    Lee, Seong Ku
    Jeong, Tae Moon
    Lee, Jongmin
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (16)
  • [10] Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime
    Leemans, W. P.
    Gonsalves, A. J.
    Mao, H. -S.
    Nakamura, K.
    Benedetti, C.
    Schroeder, C. B.
    Toth, Cs.
    Daniels, J.
    Mittelberger, D. E.
    Bulanov, S. S.
    Vay, J. -L.
    Geddes, C. G. R.
    Esarey, E.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (24)