Baby Cry Recognition by BCRNet Using Transfer Learning and Deep Feature Fusion

被引:2
|
作者
Zhang, Ke [1 ]
Ting, Hua-Nong [1 ,2 ]
Choo, Yao-Mun [3 ]
机构
[1] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur 50603, Malaysia
[2] Jining Med Univ, Fac Med Engn, Jining 272067, Shandong, Peoples R China
[3] Univ Malaya, Fac Med, Dept Paediat, Kuala Lumpur 50603, Malaysia
关键词
Baby cry; recognition; transfer learning; autoencoder; feature fusion; deep neural network; CLASSIFICATION;
D O I
10.1109/ACCESS.2023.3330789
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning theory has made remarkable advancements in the field of baby cry recognition, significantly enhancing its accuracy. Nonetheless, existing research faces two challenges. Firstly, the limited size of the database increases the risk of overfitting for a deep learning model. Secondly, the integration of multi-domain features has been neglected. To address these issues, a novel approach called BCRNet is proposed, which combines transfer learning and feature fusion. The BCRNet model takes multi-domain features as input and extracts deep features using a transfer learning model. Subsequently, a multilayer autoencoder is utilized for feature reduction, and a Support Vector Machine (SVM) is employed to select the transfer learning model with the highest classification accuracy. Then two features are concatenated to form fused features. Finally, the fused features are fed into a deep neural network for classification. Experimental results show that the proposed model is effective in mitigating the model overfitting problem due to small datasets. The fused features of the proposed method are better than the existing methods using single domain features.
引用
收藏
页码:126251 / 126262
页数:12
相关论文
共 50 条
  • [1] Baby cry recognition based on SLGAN model data generation and deep feature fusion
    Zhang, Ke
    Ting, Hua-Nong
    Choo, Yao-Mun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [2] Baby Cry Recognition Using Deep Neural Networks
    Yong, Boon Fei
    Ting, Hua Nong
    Ng, Kwan Hoong
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 3, 2019, 68 (03): : 809 - 813
  • [3] Baby Cry Detection in Domestic Environment using Deep Learning
    Lavner, Yizhar
    Cohen, Rami
    Ruinskiy, Dima
    IJzerman, Hans
    2016 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING (ICSEE), 2016,
  • [4] OptiMobileX: Optimizing Deep Transfer Learning Model for Accurate Human Posture Recognition Using a Deep Feature Fusion Technique
    Ogundokun, Roseline Oluwaseun
    Damasevicius, Robertas
    Maskeliunas, Rytis
    IEEE Sensors Journal, 2025, 25 (06) : 9759 - 9766
  • [5] Speech emotion recognition using feature fusion: a hybrid approach to deep learning
    Khan, Waleed Akram
    ul Qudous, Hamad
    Farhan, Asma Ahmad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (31) : 75557 - 75584
  • [6] Feature fusion using deep learning for smartphone based human activity recognition
    Thakur D.
    Biswas S.
    International Journal of Information Technology, 2021, 13 (4) : 1615 - 1624
  • [7] Handwritten Digit Recognition using Ensemble Learning with Deep Learning-based Feature Fusion
    Ankoliya, Arjav
    H., Bhadani
    H., Dalsania
    P., Goel
    8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2024 - Proceedings, 2024, : 1961 - 1966
  • [8] Madhubani Art Classification using transfer learning with deep feature fusion and decision fusion based
    Varshney, Seema
    Lakshmi, C. Vasantha
    Patvardhan, C.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 119
  • [9] Transfer deep feature learning for face sketch recognition
    Weiguo Wan
    Yongbin Gao
    Hyo Jong Lee
    Neural Computing and Applications, 2019, 31 : 9175 - 9184
  • [10] Transfer deep feature learning for face sketch recognition
    Wan, Weiguo
    Gao, Yongbin
    Lee, Hyo Jong
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 9175 - 9184