On the Galois-Gauss sums of weakly ramified characters

被引:0
|
作者
Kuang, Yu [1 ]
机构
[1] 1135 Jiuzhou Dadao, Zhuhai, Peoples R China
来源
关键词
Galois-Gauss sums; Galois module structure; relative algebraic K-theory; weak ramification; EPSILON-CONSTANTS; MODULE STRUCTURE; SQUARE-ROOT; EXTENSIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bley, Burns and Hahn used relative algebraic K-theory methods to formulate a precise conjectural link between the (second Adams-operator twisted) Galois-Gauss sums of weakly ramified Artin characters and the square root of the inverse different of finite, odd degree, Galois extensions of number fields. We provide concrete new evidence for this conjecture in the setting of extensions of odd prime-power degree by using a refined version of a well-known result of Ullom.
引用
收藏
页码:417 / 440
页数:24
相关论文
共 50 条