Parametric investigation of micro-pores coalescence in the microstructure of LPBF manufactured AISI 316 stainless steel under high cycle fatigue loading

被引:6
|
作者
Malekipour, Kazem [1 ]
Badrossamay, Mohsen [1 ]
Mashayekhi, Mohammad [1 ]
机构
[1] Isfahan Univ Technol, Dept Mech Engn, Esfahan 8415683111, Iran
关键词
Mechanical engineering; Selective laser melted parts; AISI 316 stainless steel; Additive manufacturing; Finite elements analysis; Fatigue; Manufacturing defect; Laser powder bed fusion; LIFE PREDICTION; VOID GROWTH; STRESS; TI-6AL-4V; BEHAVIOR; FAILURE; SHAPE;
D O I
10.1016/j.engfailanal.2022.106942
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, damage growth and load-carrying capacity of specimens made by laser powder bed fusion (LPBF) at various triaxial stresses have been evaluated by the damage mechanics approach, using the Chaboche-Lemaitre stress-based damage model and Lemaitre damage model based on equivalent plastic strain under high cycle fatigue (HCF) loading. In this regard, with the devel-opment of a parametric numerical model, the effect of stress triaxiality, external HCF loading, and micro-pore geometric parameters size on the damage growth and coalescence of two-void cluster embedded in representative volume element (RVE) have been investigated. The results show that increasing the triaxial stress from 0.5 to 2.1 leads to a severe decrease in ligament load carrying capacity and eventually voids coalescence through an increase in von Mises stress around the micro-pores. The results also indicate that a two-void cluster with a relative distance of less than 10 can be considered as a crack initiating site in the microstructure of LPBF components under HCF loading.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Numerical investigation of the surface and microstructure effects on the high cycle fatigue performance of additive manufactured stainless steel 316L
    Liang, Xiaoyu
    Robert, Camille
    Hor, Anis
    Morel, Franck
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 149
  • [2] An Investigation of the Microstructure and Fatigue Behavior of Additively Manufactured AISI 316L Stainless Steel with Regard to the Influence of Heat Treatment
    Blinn, Bastian
    Klein, Marcus
    Glaessner, Christopher
    Smaga, Marek
    Aurich, Jan C.
    Beck, Tilmann
    METALS, 2018, 8 (04):
  • [3] Influence of the microstructure and voids on the high-cycle fatigue strength of 316L stainless steel under multiaxial loading
    Guerchais, R.
    Morel, F.
    Saintier, N.
    Robert, C.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2015, 38 (09) : 1087 - 1104
  • [4] High cycle fatigue strength of additively manufactured AISI 316L Stainless Steel parts joined by laser welding
    Abroug, Foued
    Monnier, Axel
    Arnaud, Lionel
    Balcaen, Yannick
    Dalverny, Olivier
    Engineering Fracture Mechanics, 2022, 275
  • [5] High cycle fatigue strength of additively manufactured AISI 316L Stainless Steel parts joined by laser welding
    Abroug, Foued
    Monnier, Axel
    Arnaud, Lionel
    Balcaen, Yannick
    Dalverny, Olivier
    ENGINEERING FRACTURE MECHANICS, 2022, 275
  • [6] Effect of micro-defects on fatigue lifetime of additive manufactured 316L stainless steel under multiaxial loading
    Wang, Yingyu
    Su, Zhenli
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 111
  • [7] Fatigue Crack Growth Studies under Mixed-Mode Loading in AISI 316 Stainless Steel
    Alshoaibi, Abdulnaser M.
    Bashiri, Abdullateef H.
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [8] Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel
    Voloskov, Boris
    Evlashin, Stanislav
    Dagesyan, Sarkis
    Abaimov, Sergey
    Akhatov, Iskander
    Sergeichev, Ivan
    MATERIALS, 2020, 13 (15)
  • [9] Effect of laser surface treatment on high cycle fatigue of AISI 316L stainless steel
    Stamm, H
    Holzwarth, U
    Boerman, DJ
    Marques, FD
    Olchini, A
    Zausch, R
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1996, 19 (08) : 985 - 995
  • [10] Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading
    Oh, Hyeong
    Myung, NohJun
    Choi, Nak-Sam
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2016, 40 (12) : 1027 - 1035