Forecasting greenhouse air and soil temperatures: A multi-step time series approach employing attention-based LSTM network

被引:9
|
作者
Li, Xinxing [1 ,2 ]
Zhang, Lu [1 ]
Wang, Xiangyu [1 ]
Liang, Buwen [1 ,3 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] Nanchang Inst Technol, Nanchang 330044, Peoples R China
[3] China Agr Univ, Beijing 100083, Peoples R China
关键词
Facility agriculture; Greenhouse; Air temperature; Soil temperature; Time series; Attentional mechanism;
D O I
10.1016/j.compag.2023.108602
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Greenhouses stand as key infrastructural components in contemporary agriculture, facilitating the perennial availability of vegetables. Harnessing accurate, real-time environmental data, particularly air and soil temperature, is pivotal to promoting the facility's efficiency in pest and disease alarming and vegetable production. Nevertheless, despite consistent long-term temperature trends, short-term fluctuations prove to be considerably nonlinear, time-lagged, and multivariate-coupled due to the unique microclimate of the greenhouse. Addressing this, we propose a novel short-term multi-step prediction model that assimilates a range of environmental data including air temperature, humidity, soil temperature, and soil moisture content at diverse greenhouse heights. This model utilizes an Attention-LSTM based time series approach to accurately predict multi-step short-term temperature variations within the greenhouse. By employing a modest amount of historical data (approximately 48 h), the model provides future temperature forecasts within a range of 30 to 480 min with high accuracy. When benchmarked against renowned models such as RNN, GRU, and LSTM networks, our proposed models display impressive performance. It achieved R2 values of 0.93, 0.94, 0.95, and 0.86 for 1, 4, 8, and 16-step predictions, respectively, in the domain of air temperature forecasting. The corresponding MSE values stood at 0.42, 0.32, 0.27, and 0.81. In parallel, for soil temperature forecasts, our model recorded R2 values of 0.96, 0.94, 0.92, and 0.89 for 1, 4, 8, and 16-step predictions, respectively, alongside MSE values of 0.36, 0.48, 0.73, and 0.99 for the equivalent steps. To conclude, these results reveal the exceptional predictive aptitude of our model for both air and soil temperature forecasts within greenhouse environments, validating its standing as an effective tool for the optimization of vegetable farming practices. Consequently, our model demonstrates its ability to yield precise predictions of environmental variables within greenhouses, offering crucial early warning mechanisms for the enhancement of vegetable cultivation processes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Attention-Based Models for Multivariate Time Series Forecasting: Multi-step Solar Irradiation Prediction
    Sakib, Sadman
    Mahadi, Mahin K.
    Abir, Samiur R.
    Moon, Al-Muzadded
    Shafiullah, Ahmad
    Ali, Sanjida
    Faisal, Fahim
    Nishat, Mirza M.
    HELIYON, 2024, 10 (06)
  • [2] Multi-scale adaptive attention-based time-variant neural networks for multi-step time series forecasting
    Gao Changxia
    Zhang Ning
    Li Youru
    Lin Yan
    Wan Huaiyu
    Applied Intelligence, 2023, 53 : 28974 - 28993
  • [3] Multi-scale adaptive attention-based time-variant neural networks for multi-step time series forecasting
    Gao, Changxia
    Zhang, Ning
    Li, Youru
    Lin, Yan
    Wan, Huaiyu
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28974 - 28993
  • [4] Multi-step forecasting of multivariate time series using multi-attention collaborative network
    He, Xiaoyu
    Shi, Suixiang
    Geng, Xiulin
    Yu, Jie
    Xu, Lingyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [5] Multi-step ahead time series forecasting for different data patterns based on LSTM recurrent neural network
    Liu Yunpeng
    Hou Di
    Bao Junpeng
    Qi Yong
    2017 14TH WEB INFORMATION SYSTEMS AND APPLICATIONS CONFERENCE (WISA 2017), 2017, : 305 - 310
  • [6] Attention-based LSTM network-assisted time series forecasting models for petroleum production
    Kumar, Indrajeet
    Tripathi, Bineet Kumar
    Singh, Anugrah
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [7] Robustness of LSTM neural networks for multi-step forecasting of chaotic time series
    Sangiorgio, Matteo
    Dercole, Fabio
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [8] Air pollution forecasting based on attention-based LSTM neural network and ensemble learning
    Liu, Duen-Ren
    Lee, Shin-Jye
    Huang, Yang
    Chiu, Chien-Ju
    EXPERT SYSTEMS, 2020, 37 (03)
  • [9] Multi-step prediction of greenhouse temperature and humidity based on temporal position attention LSTM
    Guo, Zihao
    Feng, Lei
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (12) : 4907 - 4934
  • [10] A multi-step forecasting method of time series
    Zhou, JB
    Wang, YK
    Yang, GY
    Zhao, YL
    13TH CONFERENCE ON PROBABILITY AND STATISTICS IN THE ATMOSPHERIC SCIENCES, 1996, : 361 - 362