Improving the resolution of Fourier ptychographic imaging using an a priori neural network

被引:1
|
作者
Sha, Junting [1 ]
Qiu, Wenmao [2 ]
He, Guannan [2 ,3 ]
Luo, Zhi [1 ]
Huang, Bo [1 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
[2] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Sch Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Frontier Res Inst Phys, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
MICROSCOPY RECONSTRUCTION; CODED ILLUMINATION; SUPERRESOLUTION; PHASE;
D O I
10.1364/OL.508134
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we propose a dual-structured prior neural network model that independently restores both the amplitude and phase image using a random latent code for Fourier ptychography (FP). We demonstrate that the inherent prior information within the neural network can generate super-resolution images with a resolution that exceeds the combined numerical aperture of the FP system. This method circumvents the need for a large labeled dataset. The training process is guided by an appropriate forward physical model. We validate the effectiveness of our approach through simulations and experimental data. The results suggest that integrating image prior information with system-collected data is a potentially effective approach for improving the resolution of FP systems. (c) 2023 Optica Publishing Group
引用
收藏
页码:6316 / 6319
页数:4
相关论文
共 50 条
  • [1] Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow
    Jiang, Shaowei
    Guo, Kaikai
    Liao, Jun
    Zheng, Guoan
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (07): : 3306 - 3319
  • [2] Forward imaging neural network with correction of positional misalignment for Fourier ptychographic microscopy
    Zhang, Jinlei
    Tao, Xiao
    Yang, Lin
    Wu, Rengmao
    Sun, Peng
    Wang, Chang
    Zheng, Zhenrong
    OPTICS EXPRESS, 2020, 28 (16) : 23164 - 23175
  • [3] Fourier ptychographic imaging
    Zheng, Guoan
    2015 PHOTONICS CONFERENCE (IPC), 2015,
  • [4] Fourier ptychographic microscopy with untrained deep neural network priors
    Chen, Quan
    Huang, Duolan
    Chen, Rui
    OPTICS EXPRESS, 2022, 30 (22): : 39597 - 39612
  • [5] Incoherent Fourier Ptychographic Super-resolution Projection and Imaging System
    Divitt, Shawn
    Park, Samuel D.
    Gardner, Dennis F.
    Watnik, Abbie T.
    2020 IEEE RESEARCH AND APPLICATIONS OF PHOTONICS IN DEFENSE CONFERENCE (RAPID), 2020,
  • [6] Histological and Cytological Imaging using Fourier Ptychographic Microscopy
    Bendkowski, Christopher
    Fu, Bin
    Manescu, Petru
    Claveau, Remy
    Fernandez-Reyes, Delmiro
    Shaw, Michael J.
    FRONTIERS IN BIOPHOTONICS AND IMAGING, 2021, 11879
  • [7] High-Resolution Oil-Free Imaging of Chromosomes Using Fourier Ptychographic Microscopy
    Yu, Changliang
    Tang, Yuguo
    JOURNAL OF BIOPHOTONICS, 2025,
  • [8] High resolution integral holography using Fourier ptychographic approach
    Li, Zhaohui
    Zhang, Jianqi
    Wang, Xiaorui
    Liu, Delian
    OPTICS EXPRESS, 2014, 22 (26): : 31935 - 31947
  • [9] The integration of neural network and physical reconstruction model for Fourier ptychographic microscopy
    Zhang, Jinlei
    Tao, Xiao
    Yang, Lin
    Wang, Chang
    Tao, Chenning
    Hu, Jing
    Wu, Rengmao
    Zheng, Zhenrong
    OPTICS COMMUNICATIONS, 2022, 504
  • [10] Neural network model combined with pupil recovery for Fourier ptychographic microscopy
    Sun, Minglu
    Chen, Xiong
    Zhu, Youqiang
    Li, Dayu
    Mu, Quanquan
    Xuan, Li
    OPTICS EXPRESS, 2019, 27 (17) : 24161 - 24174