Statistical Texture Learning Method for Monitoring Abandoned Suburban Cropland Based on High-Resolution Remote Sensing and Deep Learning

被引:11
|
作者
Shen, Qianhui [1 ]
Deng, Haojun [1 ]
Wen, Xinjian [2 ,3 ,4 ]
Chen, Zhanpeng [2 ,3 ,4 ]
Xu, Hongfei [2 ,3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Peoples R China
[2] Surveying & Mapping Inst Lands & Resource, Dept Guangdong Prov, Guangzhou 510663, Peoples R China
[3] Minist Nat Resources, Key Lab Nat Resources Monitoring Trop & Subtrop Ar, Guangzhou 510663, Peoples R China
[4] Guangdong Sci & Technol Collaborat Innovat Ctr Nat, Guangzhou 510663, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Feature extraction; Remote sensing; Semantic segmentation; Task analysis; Semantics; Convolution; Spatial resolution; Cropland abandonment; deep learning (DL); remote sensing; statistical learning; very high resolution (VHR); TEMPORAL SEGMENTATION; AGRICULTURAL LAND; NETWORK; FOREST; CHINA;
D O I
10.1109/JSTARS.2023.3255541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cropland abandonment is crucial in agricultural management and has a profound impact on crop yield and food security. In recent years, many cropland abandonment identification methods based on remote sensing observation data have been proposed, but most of these methods are based on coarse-resolution images and use traditional machine learning methods for simple identification. To this end, we perform abandonment recognition on high-resolution remote sensing images. According to the texture features of the abandoned land, we combine the method of statistical texture learning and propose a new deep learning framework called pyramid scene parsing network-statistical texture learning (PSPNet-STL). The model integrates high-level semantic feature extraction and deep mining of low-level texture features to identify cropland abandonment. First, we labeled the abandoned cropland area and built the high-resolution abandoned cropland (HRAC) dataset, a high-resolution cropland abandonment dataset. Second, we improved PSPNet by fusing statistical texture learning modules to learn multiple texture information on low-level feature maps and combined high-level semantic features for cropland abandonment recognition. Experiments are performed on the HRAC dataset. Compared with other methods, the proposed model has the best performance on this dataset, both in terms of accuracy and visualization, proving that deep mining of low-level statistical texture features is beneficial for crop abandonment recognition.
引用
收藏
页码:3060 / 3069
页数:10
相关论文
共 50 条
  • [1] A divided and stratified extraction method of high-resolution remote sensing information for cropland in hilly and mountainous areas based on deep learning
    Liu W.
    Wu Z.
    Luo J.
    Sun Y.
    Wu T.
    Zhou N.
    Hu X.
    Wang L.
    Zhou Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (01): : 105 - 116
  • [2] A high-resolution remote sensing image building extraction method based on deep learning
    Fan R.
    Chen Y.
    Xu Q.
    Wang J.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (01): : 34 - 41
  • [3] Oil Tank Extraction in High-resolution Remote Sensing Images based on Deep Learning
    Xia, Xian
    HongLiang
    Yang RongFeng
    Kun, Yang
    2018 26TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS (GEOINFORMATICS 2018), 2018,
  • [4] Studies on High-Resolution Remote Sensing Sugarcane Field Extraction based on Deep Learning
    Zhu, Ming
    Yao, Maohua
    He, Yuqing
    He, Yongning
    Wu, Bo
    4TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESOURCES AND ENVIRONMENT ENGINEERING, 2019, 237
  • [5] Stripe Noise Detection of High-Resolution Remote Sensing Images Using Deep Learning Method
    Li, Binbo
    Zhou, Ying
    Xie, Donghai
    Zheng, Lijuan
    Wu, Yu
    Yue, Jiabao
    Jiang, Shaowei
    REMOTE SENSING, 2022, 14 (04)
  • [6] Aircraft-Bunker Detection Method Based on Deep Learning in High-Resolution Remote-Sensing Images
    Shi Shushu
    Chen Yongqiang
    Wang Yingjie
    Wang Chunle
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (04)
  • [7] Land cover classification in high-resolution remote sensing: using Swin Transformer deep learning with texture features
    Zhang, Yongle
    Huang, Min
    Chen, Yanxi
    Xiao, Xingzhu
    Li, Hao
    JOURNAL OF SPATIAL SCIENCE, 2024,
  • [8] Building Extraction from High-Resolution Remote-Sensing Images Based on Deep Learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    ELEKTROTEHNISKI VESTNIK, 2020, 87 (05): : 281 - 286
  • [9] Building extraction from high-resolution remote-sensing images based on deep learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    Elektrotehniski Vestnik/Electrotechnical Review, 2020, 87 (05): : 281 - 286
  • [10] Recognition and extraction of high-resolution satellite remote sensing image buildings based on deep learning
    Yifu Zeng
    Yi Guo
    Jiayi Li
    Neural Computing and Applications, 2022, 34 : 2691 - 2706