Multi-scenario reduction pathways and decoupling analysis of China's sectoral carbon emissions

被引:5
|
作者
Zhou, Kaile [1 ,2 ]
Yang, Jingna [1 ,2 ]
Yin, Hui [1 ,3 ]
Ding, Tao [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Anhui Prov Key Lab Philosophy & Social Sci Smart M, Hefei 230009, Peoples R China
[3] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
基金
中国国家自然科学基金;
关键词
ENERGY-CONSUMPTION; BENEFITS; PEAK; CO2;
D O I
10.1016/j.isci.2023.108404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To achieve its goal of carbon emissions peak and neutrality, China requires synergistic efforts across all sectors. In this study, three scenarios-baseline, policy, and green low-carbon-were developed to explore the pathways for China's emissions reduction across sectors from 2020 to 2060, and the timing of decoupling economic growth from CO2. The results showed that, under these scenarios, China's carbon emissions peak in 2030, 2026, and 2025, with strong decoupling time, lagged one year behind peak attainment. The agriculture, forestry, livestock, and fishing (AFH) and mining and quarrying (MQ) sectors would be the first to achieve a carbon peak. Under all three scenarios, all of the other sectors-with the exception of electricity, gas, and water production and supply (EGW)-will achieve a carbon peak by 2030. Therefore, policymakers should set carbon peak goals based on sector characteristics and ensure energy security in the process of achieving carbon neutrality.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multi-perspective influence mechanism analysis and multi-scenario prediction of China's carbon emissions
    Yi, Tao
    Qiu, Mohan
    Zheng, Hao
    Liu, Jinpeng
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2020, 20 (01) : 61 - 79
  • [2] A multi-sectoral decomposition and decoupling analysis of carbon emissions in Guangdong province, China
    Xu, Wenhao
    Xie, Yulei
    Xia, Dehong
    Ji, Ling
    Huang, Guohe
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 298
  • [3] Multi-factor decomposition and multi-scenario prediction decoupling analysis of China's carbon emission under dual carbon goal
    Hao, Junhong
    Gao, Fei
    Fang, Xuanyi
    Nong, Xinlu
    Zhang, Yingxin
    Hong, Feng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 841
  • [4] Multi-Scenario Analysis of Energy Consumption and Carbon Emissions: The Case of Hebei Province in China
    Li, Zeng
    Fu, Jingying
    Lin, Gang
    Jiang, Dong
    Liu, Kun
    Wang, Yaxin
    ENERGIES, 2019, 12 (04)
  • [5] Pathways for reducing carbon emissions in county-level transportation: A life cycle perspective and multi-scenario analysis
    Xie, Xiaohuan
    Zhong, Yuelin
    Li, Shengyuan
    Gou, Zhonghua
    ENERGY STRATEGY REVIEWS, 2025, 58
  • [6] Calculation decoupling analysis and scenario prediction of carbon emissions of transportation in China
    Yang, Qi
    Zhu, Rong-Hui
    Zhao, Xiao-Qiang
    Chang'an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang'an University (Natural Science Edition), 2014, 34 (05): : 77 - 83
  • [7] Multi-Scenario land cover changes and carbon emissions prediction for peak carbon emissions in the Yellow River Basin, China
    Niu, Haipeng
    Chen, Si
    Xiao, Dongyang
    ECOLOGICAL INDICATORS, 2024, 168
  • [8] Multi-Scenario Simulation of Land Use Carbon Emissions from Energy Consumption in Shenzhen, China
    Tang, Wenwen
    Cui, Lihan
    Zheng, Sheng
    Hu, Wei
    LAND, 2022, 11 (10)
  • [9] The degree of population aging and carbon emissions: Analysis of mediation effect and multi-scenario simulation
    Li, Shuyu
    Jia, Shun
    Liu, Yang
    Li, Rongrong
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 367
  • [10] A Calculation Model of Carbon Emissions Based on Multi-Scenario Simulation Analysis of Electricity Consumption
    Chen, Xiaoli
    Liao, Zhiwei
    Gao, Zhihua
    Li, Qian
    Lv, Peng
    Zheng, Guangyu
    Yang, Kun
    SUSTAINABILITY, 2022, 14 (14)