Transparency in Medical Artificial Intelligence Systems

被引:0
|
作者
Quakulinski, Lars [1 ]
Koumpis, Adamantios [2 ,3 ]
Beyan, Oya Deniz [2 ,3 ,4 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] Univ Cologne, Inst Biomed Informat, Fac Med, Cologne, Germany
[3] Univ Cologne, Univ Hosp Cologne, Cologne, Germany
[4] Fraunhofer Inst Appl Informat Technol FIT, St Augustin, Germany
关键词
Explainable AI; transparency; medicine;
D O I
10.1142/S1793351X23630011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many of the artificial intelligence (AI) systems used nowadays have a very high level of accuracy but fail to explain their decisions. This is critical, especially in sensitive areas such as medicine and the health area at large but also for applications of the law, finance etc., where explanations for certain decisions are needed and are often useful and valuable as the decision itself. This paper presents a review of four different methods for creating transparency in AI systems. It also suggests a list of criteria under which circumstances one should use which methods.
引用
收藏
页码:495 / 510
页数:16
相关论文
共 50 条
  • [1] Transparency and trust in artificial intelligence systems
    Schmidt, Philipp
    Biessmann, Felix
    Teubner, Timm
    JOURNAL OF DECISION SYSTEMS, 2020, 29 (04) : 260 - 278
  • [2] The Effect of Progressive Disclosure in the Transparency of Explainable Artificial Intelligence Systems
    Muralidhar, Deepa
    2024 IEEE SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING, VL/HCC 2024, 2024, : 382 - 383
  • [3] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [4] Transparency of artificial intelligence/machine learning-enabled medical devices
    Aubrey A. Shick
    Christina M. Webber
    Nooshin Kiarashi
    Jessica P. Weinberg
    Aneesh Deoras
    Nicholas Petrick
    Anindita Saha
    Matthew C. Diamond
    npj Digital Medicine, 7
  • [5] Transparency and reproducibility in artificial intelligence
    Haibe-Kains, Benjamin
    Adam, George Alexandru
    Hosny, Ahmed
    Khodakarami, Farnoosh
    Shraddha, Thakkar
    Kusko, Rebecca
    Sansone, Susanna-Assunta
    Tong, Weida
    Wolfinger, Russ D.
    Mason, Christopher E.
    Jones, Wendell
    Dopazo, Joaquin
    Furlanello, Cesare
    Waldron, Levi
    Wang, Bo
    McIntosh, Chris
    Goldenberg, Anna
    Kundaje, Anshul
    Greene, Casey S.
    Broderick, Tamara
    Hoffman, Michael M.
    Leek, Jeffrey T.
    Korthauer, Keegan
    Huber, Wolfgang
    Brazma, Alvis
    Pineau, Joelle
    Tibshirani, Robert
    Hastie, Trevor
    Ioannidis, John P. A.
    Quackenbush, John
    Aerts, Hugo J. W. L.
    NATURE, 2020, 586 (7829) : E14 - U7
  • [6] Artificial intelligence and the value of transparency
    Joel Walmsley
    AI & SOCIETY, 2021, 36 : 585 - 595
  • [7] Transparency and reproducibility in artificial intelligence
    Benjamin Haibe-Kains
    George Alexandru Adam
    Ahmed Hosny
    Farnoosh Khodakarami
    Levi Waldron
    Bo Wang
    Chris McIntosh
    Anna Goldenberg
    Anshul Kundaje
    Casey S. Greene
    Tamara Broderick
    Michael M. Hoffman
    Jeffrey T. Leek
    Keegan Korthauer
    Wolfgang Huber
    Alvis Brazma
    Joelle Pineau
    Robert Tibshirani
    Trevor Hastie
    John P. A. Ioannidis
    John Quackenbush
    Hugo J. W. L. Aerts
    Nature, 2020, 586 : E14 - E16
  • [8] Artificial intelligence and the value of transparency
    Walmsley, Joel
    AI & SOCIETY, 2021, 36 (02) : 585 - 595
  • [9] Mobile Telemedicine Systems with Artificial Medical Intelligence
    Garichev, Sergey
    Natenzon, Michael
    Klassen, Viktor
    Safin, Artem
    Sergeev, Stanislav
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: APPLICATIONS AND INNOVATIONS (IC-AIAI 2019), 2019, : 8 - 11
  • [10] Overview of transparency and inspectability mechanisms to achieve accountability of artificial intelligence systems
    Hauer, Marc P.
    Krafft, Tobias D.
    Zweig, Katharina
    DATA & POLICY, 2023, 5