On a group extension involving the Suzuki group Sz(8)
被引:1
|
作者:
Basheer, Ayoub B. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Limpopo Turfloop, Sch Math & Comp Sci, P Bag X1106, ZA-0727 Sovenga, South AfricaUniv Limpopo Turfloop, Sch Math & Comp Sci, P Bag X1106, ZA-0727 Sovenga, South Africa
Basheer, Ayoub B. M.
[1
]
机构:
[1] Univ Limpopo Turfloop, Sch Math & Comp Sci, P Bag X1106, ZA-0727 Sovenga, South Africa
Group extensions;
Suzuki simple group;
Inertia groups;
Fischer matrices;
Character table;
MAXIMAL SUBGROUP;
FISCHER;
MATRICES;
D O I:
10.1007/s13370-023-01130-z
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The Suzuki simple group Sz(8) has an automorphism group 3. Using the electronic Atlas [22], the group Sz(8) : 3 has an absolutely irreducible module of dimension 12 over F-2. Therefore a split extension group of the form 2(12):(Sz(8):3):=G exists. In this paper we study this group, where we determine its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. We determined the inertia factor groups of G by analysing the maximal subgroups of Sz(8) : 3 and maximal of the maximal subgroups of Sz(8) : 3 together with various other information. It turns out that the character table of G is a 43x43 complex valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 7.