LARGE DEVIATIONS FOR TOP EIGENVALUES OF β-JACOBI ENSEMBLES AT SCALING TEMPERATURES

被引:0
|
作者
Lei, Liangzhen [1 ]
Ma, Yutao [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
关键词
beta-Jacobi ensemble; large deviation; Wachter law; extremal eigenvalue; SPECTRAL MEASURES; LIMIT-THEOREMS;
D O I
10.1007/s10473-023-0418-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda = (lambda(1), center dot center dot center dot, lambda(n)) be beta-Jacobi ensembles with parameters p(1), p(2), n and beta, with beta varying with n. Set gamma = lim(n ->infinity) n/p1 and sigma = lim(n ->infinity) p1/p2. Suppose that lim(n ->infinity) log n/beta n = 0 and 0 <= sigma gamma < 1. We offer the large deviation for p1+p2/p1 max(1 <= i <= n) lambda i when gamma > 0 via the large deviation of the corresponding empirical measure and via a direct estimate, respectively, when gamma = 0
引用
收藏
页码:1767 / 1780
页数:14
相关论文
共 50 条