WELL-POSEDNESS AND BLOWUP FOR THE DISPERSION-MANAGED NONLINEAR SCHR?DINGER EQUATION

被引:4
|
作者
Murphy, Jason [1 ]
Van Hoose, Tim [1 ]
机构
[1] Missouri S&T, Dept Math & Stat, Rolla, MO 65401 USA
关键词
SOLITONS; DECAY;
D O I
10.1090/proc/16243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation with periodic dis-persion management. We first establish global-in-time Strichartz estimates for the underlying linear equation with suitable dispersion maps. As an appli-cation, we establish a small-data scattering result for the 3d cubic equation. Finally, we use a virial argument to demonstrate the existence of blowup so-lutions for the 3d cubic equation with piecewise constant dispersion map.
引用
收藏
页码:2489 / 2502
页数:14
相关论文
共 50 条
  • [1] Modified scattering for a dispersion-managed nonlinear Schrödinger equation
    Jason Murphy
    Tim Van Hoose
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [2] Global well-posedness for the derivative nonlinear Schrödinger equation
    Hajer Bahouri
    Galina Perelman
    Inventiones mathematicae, 2022, 229 : 639 - 688
  • [3] Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation
    Tobias Jahnke
    Marcel Mikl
    Numerische Mathematik, 2018, 138 : 975 - 1009
  • [4] Sharp Global Well-Posedness for the Cubic Nonlinear Schrödinger Equation with Third Order Dispersion
    Carvajal, X.
    Panthee, M.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (02)
  • [5] Global Well-Posedness and Instability of an Inhomogeneous Nonlinear Schrödinger Equation
    T. Saanouni
    Mediterranean Journal of Mathematics, 2015, 12 : 387 - 417
  • [6] Global well-posedness for the Schrödinger equation coupled to a nonlinear oscillator
    A. I. Komech
    A. A. Komech
    Russian Journal of Mathematical Physics, 2007, 14 : 164 - 173
  • [7] Well-Posedness of an Integrable Generalization of the Nonlinear Schrödinger Equation on the Circle
    Athanasios S. Fokas
    A. Alexandrou. Himonas
    Letters in Mathematical Physics, 2011, 96 : 169 - 189
  • [8] On the well-posedness of the periodic fractional Schrödinger equation
    Beckett Sanchez
    Oscar Riaño
    Svetlana Roudenko
    Partial Differential Equations and Applications, 2025, 6 (3):
  • [9] Local well-posedness for the inhomogeneous nonlinear Schrödinger equation in Hs(Rn)
    An, JinMyong
    Kim, JinMyong
    Nonlinear Analysis: Real World Applications, 2021, 59
  • [10] Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation
    Yu Deng
    Andrea R. Nahmod
    Haitian Yue
    Communications in Mathematical Physics, 2021, 384 : 1061 - 1107