A Systematic Survey of Just-in-Time Software Defect Prediction

被引:32
|
作者
Zhao, Yunhua [1 ]
Damevski, Kostadin [2 ]
Chen, Hui [1 ,3 ]
机构
[1] CUNY, Grad Ctr, Dept Comp Sci, 365 5th Ave, New York, NY 10016 USA
[2] Virginia Commonwealth Univ, Dept Comp Sci, 401 West Main St, Richmond, VA 23284 USA
[3] CUNY, Brooklyn Coll, Dept Comp & Informat Sci, 2900 Bedford Ave, Brooklyn, NY 11210 USA
关键词
Software defect prediction; release software defect prediction; just-in-time software defect prediction; change-level software defect prediction; machine learning; searching-based algorithms; software change metrics; change defect density; REVIEWS; MODELS; IMPACT;
D O I
10.1145/3567550
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent years have experienced sustained focus in research on software defect prediction that aims to predict the likelihood of software defects. Moreover, with the increased interest in continuous deployment, a variant of software defect prediction called Just-in-Time Software Defect Prediction ( JIT-SDP) focuses on predicting whether each incremental software change is defective. JIT-SDP is unique in that it consists of two interconnected data streams, one consisting of the arrivals of software changes stemming from design and implementation, and the other the (defective or clean) labels of software changes resulting from quality assurance processes. We present a systematic survey of 67 JIT-SDP studies with the objective to help researchers advance the state of the art in JIT-SDP and to help practitioners become familiar with recent progress. We summarize best practices in each phase of the JIT-SDP workflow, carry out a meta-analysis of prior studies, and suggest future research directions. Our meta-analysis of JIT-SDP studies indicates, among other findings, that the predictive performance correlates with change defect ratio, suggesting that JIT-SDP is most performant in projects that experience relatively high defect ratios. Future research directions for JIT-SDP include situating each technique into its application domain, reliability-aware JIT-SDP, and user-centered JIT-SDP.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Just-in-Time Software Defect Prediction Techniques: A Survey
    Alnagi, Eman
    Azzeh, Mohammad
    2024 15TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS, ICICS 2024, 2024,
  • [2] Just-in-time defect prediction for software hunks
    Zhu, Xiaoyan
    Yan, Chenyu
    Whitehead, E. James, Jr.
    Niu, Binbin
    Zhu, Lei
    Pan, Long
    SOFTWARE-PRACTICE & EXPERIENCE, 2022, 52 (01): : 130 - 153
  • [3] Just-in-time Software Defect Prediction: Literature Review
    Cai L.
    Fan Y.-R.
    Yan M.
    Xia X.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (05): : 1288 - 1307
  • [4] Towards Reliable Online Just-in-Time Software Defect Prediction
    Cabral, George G.
    Minku, Leandro L.
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (03) : 1342 - 1358
  • [5] Temporal Convolutional Networks for Just-in-Time Software Defect Prediction
    Ardimento, Pasquale
    Aversano, Lerina
    Bernardi, Mario
    Cimitile, Marta
    ICSOFT: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2020, : 384 - 393
  • [6] Interpretability application of the Just-in-Time software defect prediction model
    Zheng, Wei
    Shen, Tianren
    Chen, Xiang
    Deng, Peiran
    JOURNAL OF SYSTEMS AND SOFTWARE, 2022, 188
  • [7] A Preliminary Evaluation of CPDP Approaches on Just-in-Time Software Defect Prediction
    Amasaki, Sousuke
    Aman, Hirohisa
    Yokogawa, Tomoyuki
    2021 47TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA 2021), 2021, : 279 - 286
  • [8] Local versus Global Models for Just-In-Time Software Defect Prediction
    Yang, Xingguang
    Yu, Huiqun
    Fan, Guisheng
    Shi, Kai
    Chen, Liqiong
    SCIENTIFIC PROGRAMMING, 2019, 2019
  • [9] Cross-Project Online Just-In-Time Software Defect Prediction
    Tabassum, Sadia
    Minku, Leandro L.
    Feng, Danyi
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (01) : 268 - 287
  • [10] A Practical Human Labeling Method for Online Just-in-Time Software Defect Prediction
    Song, Liyan
    Minku, Leandro Lei
    Teng, Cong
    Yao, Xin
    PROCEEDINGS OF THE 31ST ACM JOINT MEETING EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, ESEC/FSE 2023, 2023, : 605 - 617