Simultaneous removal of Ni2+, Cd2+and Cr6+from an aqueous solution by using native algal biomass loaded in Ca-alginate beads

被引:0
|
作者
Javed, Kainaat [1 ]
Ghous, Tahseen [1 ]
Shahida, Shabnam [2 ]
Haseeb, Raja Muhammad [1 ]
Saleem, Kazmeen [1 ]
Haider, Syeda Maria [1 ]
Khizer, Naghbeen [1 ]
Kareem, Anika [1 ]
Shanableh, Abdallah [3 ]
Khan, Muhammad Imran [3 ]
机构
[1] Mirpur Univ Sci & Technol MUST, Dept Chem, Mirpur 10250, Ajk, Pakistan
[2] Univ Poonch, Dept Chem, Rawalakot, Azad Kashmir, Pakistan
[3] Univ Sharjah, Res Inst Sci & Engn, Sharjah 27272, U Arab Emirates
关键词
Ca-alginate beads; Ni2+; Cd2+; Cr6+; Adsorption; HEAVY-METAL IONS; BIOSORPTION; EQUILIBRIUM; CHROMIUM(VI); WASTEWATERS; CR(VI);
D O I
10.5004/dwt.2023.29759
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this research, biosorption process is used for the simultaneous removal of Ni2+, Cd2+ and Cr6+ from an aqueous solution by using algae (Cladophora sp.) as adsorbent. Ca-alginate loaded algal beads were prepared by mixing algal biomass powder in sodium alginate solution and then adding drop wise into CaCl2 solution. Column was prepared by placing glass wool at the bottom followed by a layer of Ca-alginate loaded algal beads (weighing 2.4 g). To make column packing uniform distilled water was passed through the column before passing metal ions solution. Scanning electron microscopy confirms the rough and porous surface of blank and metal loaded Ca-alginate algal beads. Simultaneous biosorption of metal ions was supported by Fourier-transform infrared spectroscopy which indicates the presence of various functional groups like -COOH, -OH, NH2 and NO2 on algal biomass which are responsible for adsorption. These results indicated 83.3%, 97.3% and 98.3% removal of Ni2+, Cd2+ and Cr6+, respectively in 60 min at pH 3.0 for 150 mu g/mL concentration of metal ions mixtures and 0.4 g of adsorbent dose. Metal uptake capacity was 14.71, 14.53 and 69.53 mg/g for Ni2+, Cd2+ and Cr6+, respectively.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 50 条
  • [1] Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash
    Rao, M
    Parwate, AV
    Bhole, AG
    WASTE MANAGEMENT, 2002, 22 (07) : 821 - 830
  • [2] Removal of Ni2+ and Cd2+ from Aqueous Solution Using Iranian Natural Bentonite
    Hashemi, Kh.
    Zahiri, R.
    Ebadi, A. G.
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (16) : 9141 - 9143
  • [3] Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution:: preparation and biosorption kinetics analysis
    Bayramoglu, G
    Denizli, A
    Bektas, S
    Arica, MY
    MICROCHEMICAL JOURNAL, 2002, 72 (01) : 63 - 76
  • [4] Data on the removal of metals (Cr3+, Cr6+, Cd2+, Cu2+, Ni2+, Zn2+) from aqueous solution by adsorption using magnetite particles from electrochemical synthesis
    Jorge, Manrique-Julio
    Nilson, Marriaga-Cabrales
    Aracely, Hernandez-Ramirez
    Machuca-Martinez, Fiderman
    DATA IN BRIEF, 2019, 24
  • [5] A study on removal of Cr(III) from aqueous solution using biomass of Cymbopogon flexuosus immobilized in sodium alginate beads and its use as hydrogenation catalyst
    Basu, Aradhana
    Behera, Saroj Sekhar
    Dash, Suchintak
    Banerjee, Shirsendu
    Sarkar, Sanjay
    Mohanty, Chinmaya Kumar
    Dhal, Nabin Kumar
    Parhi, Pankaj Kumar
    Tripathy, Suraj K.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2019, 102 : 118 - 132
  • [6] Removal of Cu2+, Cd2+ and Ni2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane
    Sahebjamee, Nadia
    Soltanieh, Mohammad
    Mousavi, Seyed Mahmoud
    Heydarinasab, Amir
    CARBOHYDRATE POLYMERS, 2019, 210 : 264 - 273
  • [7] Efficacy of Sargassum filipendula for the removal of Pb2+, Cd2+ and Ni2+ ions from aqueous solution: a comparative study
    Verma, Ayushi
    Kumar, Shashi
    Balomajumder, Chandrajit
    Kumar, Surendra
    DESALINATION AND WATER TREATMENT, 2018, 129 : 216 - 226
  • [8] Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent
    Rad, Leila Roshanfekr
    Momeni, Arash
    Ghazani, Babak Farshi
    Irani, Mohammad
    Mahmoudi, Mehri
    Noghreh, Bahareh
    CHEMICAL ENGINEERING JOURNAL, 2014, 256 : 119 - 127
  • [9] Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent
    Irani, M. (irani_mo@ut.ac.ir), 1600, Elsevier B.V., Netherlands (256):
  • [10] Kinetic and thermodynamic studies on the removal of Zn2+ and Ni2+ from their aqueous solution using poly(phenylthiourea)imine
    Murugesan, A.
    Vidhyadevi, T.
    Kalaivani, S. S.
    Premkumar, M. P.
    Ravikumar, L.
    Sivanesan, S.
    CHEMICAL ENGINEERING JOURNAL, 2012, 197 : 368 - 378