Almost disjoint families under determinacy

被引:0
|
作者
Chan, William [1 ]
Jackson, Stephen [2 ]
Trang, Nam [2 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, Vienna, Austria
[2] Univ North Texas, Dept Math, Denton, TX 76203 USA
关键词
Almost disjoint families; Determinacy; SCALES;
D O I
10.1016/j.aim.2023.109410
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each cardinal kappa, let B(kappa) be the ideal of bounded subsets of kappa and P-kappa(kappa) be the ideal of subsets of kappa of cardinality less than kappa. Under determinacy hypothesis, this paper will completely characterize for which cardinals kappa there is a nontrivial maximal B(kappa) almost disjoint family. Also, the paper will completely characterize for which cardinals kappa there is a nontrivial maximal P-kappa(kappa) almost disjoint family when kappa is not an uncountable cardinal of countable cofinality. More precisely, the following will be shown.Assuming AD(+), for all kappa < Theta, there are no maximal B(kappa) almost disjoint families A such that <not sign>(|A| < cof(kappa)). For all kappa < Theta, if cof(kappa) > omega, then there are no maximal P-kappa(kappa) almost disjoint families A so that <not sign>(|A|<cof(kappa)).Assume AD and V = L(R) (or more generally, AD(+) and V = L(P(R))). For any cardinal kappa, there is a maximal B(kappa) almost disjoint family A so that <not sign>(|A|<cof(kappa)) if and only if cof(kappa) >= Theta. For any cardinal kappa with cof(kappa) > omega, there is a maximal P-kappa(kappa) almost disjoint family if and only if cof(kappa) >= Theta.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Maximal almost disjoint families, determinacy, and forcing
    Haga, Karen Bakke
    Schrittesser, David
    Tornquist, Asger
    JOURNAL OF MATHEMATICAL LOGIC, 2022, 22 (01)
  • [2] Definability and almost disjoint families
    Toernquist, Asger
    ADVANCES IN MATHEMATICS, 2018, 330 : 61 - 73
  • [3] REFINING WITH ALMOST DISJOINT FAMILIES
    HECHLER, SH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (04): : A447 - A447
  • [4] On Borel almost disjoint families
    Witold Marciszewski
    Roman Pol
    Monatshefte für Mathematik, 2012, 168 : 545 - 562
  • [5] Almost disjoint families and property (a)
    Szeptycki, PJ
    Vaughan, JE
    FUNDAMENTA MATHEMATICAE, 1998, 158 (03) : 229 - 240
  • [6] HOMOGENEOUS ALMOST DISJOINT FAMILIES
    SHELAH, S
    STEPRANS, J
    ALGEBRA UNIVERSALIS, 1994, 31 (02) : 196 - 203
  • [7] A note on almost disjoint families
    Komjath, Peter
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 303 - 305
  • [8] On Borel almost disjoint families
    Marciszewski, Witold
    Pol, Roman
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (3-4): : 545 - 562
  • [9] Almost disjoint families and ultrapowers
    Anoussis, Michalis
    Felouzis, Vaggelis
    Tsaprounis, Konstantinos
    JOURNAL OF LOGIC AND ANALYSIS, 2021, 13
  • [10] Soft almost disjoint families
    Szeptycki, PJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) : 3713 - 3717