High-voltage electrolyte design for a Ni-rich layered oxide cathode for lithium-ion batteries

被引:6
|
作者
Hu, Jun [1 ]
Cheng, Fangyuan [1 ]
Fang, Chun [1 ]
Han, Jiantao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; LiNi0.8Co0.1Mn0.1O2; electrolyte; high voltage; additives;
D O I
10.1007/s40843-023-2449-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
LiNi0.8Co0.1Mn0.1O2 (NCM811) is one of the most promising cathode materials in high-energy-density Li-ion batteries (LIBs) because of its high capacity and low cost. However, it still suffers from irreversible capacity fading at high cut-off voltages. This is mainly because high voltage accelerates the hydrolysis reaction of lithium hexafluorophosphate with trace water to generate byproducts such as highly corrosive hydrogen fluoride (HF) resulting in an unstable cathode-electrolyte interface and continuous irreversible phase transitions. Here, we modify a conventional electrolyte by adding the dual additives of tetrabutyl titanate (TBT) and lithium difluoroxalate borate (LiDFOB) to form a stable Ti-, B-, and F-rich interfacial layer to eliminate the unfavorable cathode-electrolyte side reactions and suppress deleterious phase transitions. Additionally, TBT can stabilize the electrolyte by removing H2O/HF. With the synergistic effect of the dual additives, the cycling stability of NCM811 at high voltages is enhanced considerably. The Li divide NCM811 cell with dual additives exhibits a high capacity retention rate of 86% after 200 cycles at 1 C and a high cut-off voltage of 4.5 V. This strategy provides a reference for designing high-voltage electrolytes for LIBs.
引用
收藏
页码:3046 / 3053
页数:8
相关论文
共 50 条
  • [1] Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode
    Li, Z. D.
    Zhang, Y. C.
    Xiang, H. F.
    Ma, X. H.
    Yuan, Q. F.
    Wang, Q. S.
    Chen, C. H.
    JOURNAL OF POWER SOURCES, 2013, 240 : 471 - 475
  • [2] Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries
    Kim, Un-Hyuck
    Kuo, Liang-Yin
    Kaghazchi, Payam
    Yoon, Chong S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2019, 4 (02) : 576 - 582
  • [3] Structure modification of Ni-rich layered oxide cathode toward advanced lithium-ion batteries
    Wang, Jiayi
    Lei, Xincheng
    Gu, Lin
    Wang, Xin
    Su, Dong
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (19) : 3250 - 3268
  • [4] Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries
    Yin, Shouyi
    Deng, Wentao
    Chen, Jun
    Gao, Xu
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    NANO ENERGY, 2021, 83
  • [5] Structure modification of Ni-rich layered oxide cathode toward advanced lithium-ion batteries
    Jiayi Wang
    Xincheng Lei
    Lin Gu
    Xin Wang
    Dong Su
    Journal of Materials Research, 2022, 37 : 3250 - 3268
  • [6] Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries
    Yang, Huiping
    Wu, Hong-Hui
    Ge, Mingyuan
    Li, Lingjun
    Yuan, Yifei
    Yao, Qi
    Chen, Jie
    Xia, Lingfeng
    Zheng, Jiangming
    Chen, Zhaoyong
    Duan, Junfei
    Kisslinger, Kim
    Zeng, Xiao Cheng
    Lee, Wah-Keat
    Zhang, Qiaobao
    Lu, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (13)
  • [7] Hydrophobic Ni-Rich Layered Oxides as Cathode Materials for Lithium-Ion Batteries
    Doo, Sung Wook
    Lee, Suyeon
    Kim, Hanseul
    Choi, Jin H.
    Lee, Kyu Tae
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6246 - 6253
  • [8] Incorporation of Titanium into Ni-Rich Layered Cathode Materials for Lithium-Ion Batteries
    Kim, Jong Hwa
    Kim, Hyuntae
    Kim, Won-Joo
    Kim, Yong-Chan
    Jung, Jae Yup
    Rhee, Dong Young
    Song, Jun Ho
    Cho, Woosuk
    Park, Min-Sik
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (12) : 12204 - 12211
  • [9] A New Insight into the Capacity Decay Mechanism of Ni-Rich Layered Oxide Cathode for Lithium-Ion Batteries
    Wu, Shumeng
    Zhang, Xiaodong
    Ma, Su
    Fan, Ersha
    Lin, Jiao
    Chen, Renjie
    Wu, Feng
    Li, Li
    SMALL, 2022, 18 (47)
  • [10] Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries
    Dose, Wesley M.
    Li, Weiqun
    Temprano, Israel
    O'Keefe, Christopher A.
    Mehdi, B. Layla
    De Volder, Michael F. L.
    Grey, Clare P.
    ACS ENERGY LETTERS, 2022, 7 (10) : 3524 - 3530