Research on Real-time Detection of Stacked Objects Based on Deep Learning

被引:2
|
作者
Geng, Kaiguo [1 ,2 ]
Qiao, Jinwei [1 ,2 ]
Liu, Na [1 ,2 ]
Yang, Zhi [1 ,2 ]
Zhang, Rongmin [1 ,2 ]
Li, Huiling [3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mech & Automot Engn, Jinan 250353, Peoples R China
[2] Shandong Inst Mech Design & Res, Jinan 250353, Peoples R China
[3] Shandong Inst Innovat & Dev, Jinan 250101, Peoples R China
关键词
Stacked objects detection; Computer vision; Deep learning; One stage; Convolutional neural networks; SEGMENTATION; NETWORK; NMS;
D O I
10.1007/s10846-023-02009-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning has garnered significant attention in the field of object detection and is widely used in both industry and everyday life. The objective of this study is to investigate the applicability and targeted improvements of Deep Learning-based object detection in complex stacked environments. We analyzed the limitations in practical applications under such conditions, pinpointed the specific problems, and proposed corresponding improvement strategies. First, the study provided an overview of recent advancements in mainstream one-stage object detection algorithms, which included Anchor-based, Anchor-free, and Transformer-based architectures. The high real-time performance of these algorithms holds particular significance in practical engineering applications. It then looked at relevant technologies in three emerging research areas: Parts Recognition, Intelligent Driving, and Agricultural Picking. The study summarized existing limitations in real-time object detection within complex stacked environments and provided a comprehensive analysis of prevalent improvement strategies such as multi-level feature fusion, knowledge distillation, and hyperparameter optimization. Finally, after analyzing the performance of recent advanced one-stage algorithms on official datasets, this paper conducted empirical tests on a self-constructed industrial stacked dataset with algorithms of different structure and analyzed the experimental results in detail. A comprehensive analysis shows that Deep Learning-based object detection algorithms offer extensive applicability in complex stacked environments. In addressing diverse target sizes, overlapping occlusions, real-time constraints, and the need for lightweight solutions in complex stacked environments, each improvement strategy has its own advantages and limitations. Selecting and integrating appropriate enhancement strategies is critical and typically requires holistic evaluation, tailored to specific application contexts and challenges.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Research on Real-time Detection of Stacked Objects Based on Deep Learning (vol 109, 82, 2023)
    Geng, Kaiguo
    Qiao, Jinwei
    Liu, Na
    Yang, Zhi
    Zhang, Rongmin
    Li, Huiling
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (03)
  • [2] Real-Time Detection of Low-Textured Objects based on Deep Learning
    Laidoudi, Salah-eddine
    Maidi, Madjid
    Otmane, Samir
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [3] Real-time detection method of surface floating objects based on deep learning
    Zou Shanhua
    Peng Li
    Fang Ning-sheng
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 174 - 177
  • [4] Research on Real-Time Vehicle Detection Algorithm Based on Deep Learning
    Yang, Wei
    Zhang, Ji
    Zhang, Zhongbao
    Wang, Hongyuan
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 126 - 137
  • [5] Real-Time Lane Detection Based on Deep Learning
    Sun-Woo Baek
    Myeong-Jun Kim
    Upendra Suddamalla
    Anthony Wong
    Bang-Hyon Lee
    Jung-Ha Kim
    Journal of Electrical Engineering & Technology, 2022, 17 : 655 - 664
  • [6] Real-Time Lane Detection Based on Deep Learning
    Baek, Sun-Woo
    Kim, Myeong-Jun
    Suddamalla, Upendra
    Wong, Anthony
    Lee, Bang-Hyon
    Kim, Jung-Ha
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 655 - 664
  • [7] Research on Real-Time Ship Detection Using Deep Learning
    Yu, Jingming
    Wang, Jie
    Ren, Rong
    Lai, Qiuyu
    Luo, Xinpeng
    Lu, Hua
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 481 - 485
  • [8] Detection of Objects and Trajectories in Real-time using Deep Learning by a Controlled Robot
    Sarsenov, Adil
    Yessenbayeva, Aigerim
    Shintemirov, Almas
    Yazici, Adnan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ROBOTICS, COMPUTER VISION AND INTELLIGENT SYSTEMS (ROBOVIS), 2020, : 131 - 140
  • [9] Research on Real-Time Detection System of Rail Surface Defects Based on Deep Learning
    Wang, Yaodong
    Yu, Hang
    Guo, Baoqing
    Shi, Hongmei
    Yu, Zujun
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 21157 - 21167
  • [10] DeepDist: A Deep-Learning-Based IoV Framework for Real-Time Objects and Distance Violation Detection
    Sahraoui, Yesin
    Kerrache, Chaker Abdelaziz
    Korichi, Ahmed
    Nour, Boubakr
    Adnane, Asma
    Hussain, Rasheed
    IEEE Internet of Things Magazine, 2020, 3 (03): : 30 - 34