Theoretically predicting the solubility of polydisperse polymers using Flory-Huggins theory

被引:2
|
作者
Van Leuken, Stijn H. M. [1 ,2 ]
Van Benthem, Rolf A. T. M. [1 ,3 ]
Tuinier, Remco [1 ,2 ]
Vis, Mark [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Phys Chem, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Inst Complex Mol Syst, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Shell Energy Transit Campus Amsterdam, Grasweg 31, NL-1031 HW Amsterdam, Netherlands
来源
JOURNAL OF PHYSICS-MATERIALS | 2024年 / 7卷 / 01期
关键词
polydispersity; chemical variation; Flory-Huggins theory; analytical approximations; solution theory; lignin; MOLECULAR-WEIGHT DISTRIBUTIONS; CARBON-FIBERS; RHEOLOGICAL PROPERTIES; SOLVENT FRACTIONATION; LIGNIN; COPOLYMER; DISPERSITY; SELECTION; PLASTICS; SYSTEM;
D O I
10.1088/2515-7639/ad08d1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polydispersity affects physical properties of polymeric materials, such as solubility in solvents. Most biobased, synthetic, recycled, mixed, copolymerized, and self-assembled polymers vary in size and chemical structure. Using solvent fractionation, this variety in molecular features can be reduced and a selection of the sizes and molecular features of the polymers can be made. The significant chemical and physical dispersity of these polymers, however, complicates theoretical solubility predictions. A theoretical description of the fractionation process can guide experiments and material design. During solvent fractioning of polymers, a part of the polydisperse distribution of the polymers dissolves. To describe this process, this paper presents a theoretical tool using Flory-Huggins theory combined with molecular mass distributions and distributions in the number of functional groups. This paper quantifies how chemical and physical polydispersity of polymers affects their solubility. Comparison of theoretical predictions with experimental measurements of lignin in a mixture of solvents shows that multiple molecular features can be described well using a single set of parameters, giving a tool to theoretically predict the selective solubility of polymers.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Flory-huggins theory for the solubility of heterogeneously modified polymers
    Warren, Patrick B.
    MACROMOLECULES, 2007, 40 (18) : 6709 - 6712
  • [2] Predicting the solubility of mixtures of sugars and their replacers using the Flory-Huggins theory
    van der Sman, R. G. M.
    FOOD & FUNCTION, 2017, 8 (01) : 360 - 371
  • [3] Predicting Multi-Component Phase Equilibria of Polymers using Approximations to Flory-Huggins Theory
    van Leuken, Stijn H. M.
    van Benthem, Rolf A. T. M.
    Tuinier, Remco
    Vis, Mark
    MACROMOLECULAR THEORY AND SIMULATIONS, 2023, 32 (04)
  • [4] STUDY OF THE SOLUBILITY OF WATER IN POLYAMIDES ACCORDING TO THE FLORY-HUGGINS THEORY
    RAZUMOVSKII, LP
    MARKIN, VS
    ZAIKOV, GY
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1984, 26 (08): : 1740 - 1746
  • [5] APPLICATION OF THE FLORY-HUGGINS THEORY TO THE SOLUBILITY OF SOLIDS IN GLYCERYL TRIOLEATE
    CHIOU, CT
    MANES, M
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1986, 82 : 243 - 246
  • [6] Predicting Flory-Huggins χ from Simulations
    Zhang, Wenlin
    Gomez, Enrique D.
    Milner, Scott T.
    PHYSICAL REVIEW LETTERS, 2017, 119 (01)
  • [7] Prediction of water solubility in nylon melts based on Flory-Huggins theory
    Schaffer, MA
    Mcauley, KB
    Cunningham, MF
    Marchildon, EK
    POLYMER ENGINEERING AND SCIENCE, 2003, 43 (03): : 639 - 646
  • [8] Kinetic theory and the Flory-Huggins approximation
    Taylor, PL
    Yu, YK
    Wang, XY
    JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (03): : 1237 - 1241
  • [9] A Flory-Huggins model based on the Hansen solubility parameters
    Lindvig, T
    Michelsen, ML
    Kontogeorgis, GM
    FLUID PHASE EQUILIBRIA, 2002, 203 (1-2) : 247 - 260
  • [10] Flory-Huggins Solution Theory for Heavy Oils
    Mohan, Vijitha
    Neogi, Parthasakha
    Bai, Baojun
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 95 (04): : 796 - 798