Quantum process tomography of the single-shot entangling gate with superconducting qubits

被引:2
|
作者
Sakhouf, Hamid [1 ]
Daoud, Mohammed [2 ,3 ]
Ahl Laamara, Rachid A. [1 ]
机构
[1] Mohammed V Univ, Fac Sci, LPHE Modeling & Simulat, Rabat, Morocco
[2] Univ Ibn Tofail, Fac Sci, Dept Phys, Kenitra, Morocco
[3] Abdus Salam Int Ctr Theoret Phys ICTP, Str Costiera 11, I-34151 Trieste, Italy
关键词
quantum process tomography; entangling gate; high fidelity; superconducting qubits; ENTANGLEMENT; GENERATION; PHOTON; STATES;
D O I
10.1088/1361-6455/acc916
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A single-shot entangling gate plays a crucial role in quantum information processing due to its high fidelity. This operation gate is fast to create a maximally entangled state and forms a universal gate set for quantum computing. Currently, the preparation and demonstration of multi-qubit entanglement are achieved based on sequences of single- and two-qubit operations, yielding lower fidelity and requiring longer execution time. Here, we demonstrate by numerically simulating the use of quantum process tomography to fully characterize the performance of a single-shot three-qubit entangling gate. This gate is used to create a Greenberger-Horne-Zeilinger entangled state in Sakhouf et al (2021 J. Phys. B: At. Mol. Opt. Phys. 54 175501), directly generated by three transmon-type superconducting qubits which are mediated by a resonator with the assistance of a microwave field. Comparing ideal and simulated quantum process tomography, we characterize the entangling gate performance by calculating the mean fidelity achieving a high value >0.93
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits
    Bialczak, R. C.
    Ansmann, M.
    Hofheinz, M.
    Lucero, E.
    Neeley, M.
    O'Connell, A. D.
    Sank, D.
    Wang, H.
    Wenner, J.
    Steffen, M.
    Cleland, A. N.
    Martinis, J. M.
    NATURE PHYSICS, 2010, 6 (06) : 409 - 413
  • [2] Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits
    Walter, T.
    Kurpiers, P.
    Gasparinetti, S.
    Magnard, P.
    Potocnik, A.
    Salathe, Y.
    Pechal, M.
    Mondal, M.
    Oppliger, M.
    Eichler, C.
    Wallraff, A.
    PHYSICAL REVIEW APPLIED, 2017, 7 (05):
  • [3] Single shot i-Toffoli gate in dispersively coupled superconducting qubits
    Baker, Aneirin J.
    Huber, Gerhard B. P.
    Glaser, Niklas J.
    Roy, Federico
    Tsitsilin, Ivan
    Filipp, Stefan
    Hartmann, Michael J.
    APPLIED PHYSICS LETTERS, 2022, 120 (05)
  • [4] High-contrast readout of superconducting qubits beyond the single-shot resolution limit
    Lisenfeld, J.
    Lukashenko, A.
    Ustinov, A. V.
    APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [5] Full Quantum Process Tomography of a Universal Entangling Gate on an IBM’s Quantum Computer
    AbuGhanem, Muhammad
    arXiv,
  • [6] Optical single-shot readout of spin qubits in silicon
    Gritsch, Andreas
    Ulanowski, Alexander
    Pforr, Jakob
    Reiserer, Andreas
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [7] SINGLE-SHOT TOMOGRAPHY BY DIFFERENTIAL INTERFEROMETRY
    PRETZLER, G
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1995, 6 (10) : 1476 - 1486
  • [8] High-Fidelity Single-Shot Toffoli Gate via Quantum Control
    Zahedinejad, Ehsan
    Ghosh, Joydip
    Sanders, Barry C.
    PHYSICAL REVIEW LETTERS, 2015, 114 (20)
  • [9] Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits
    Chow, Jerry M.
    Corcoles, A. D.
    Gambetta, Jay M.
    Rigetti, Chad
    Johnson, B. R.
    Smolin, John A.
    Rozen, J. R.
    Keefe, George A.
    Rothwell, Mary B.
    Ketchen, Mark B.
    Steffen, M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [10] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
    Hu, Rui-Zi
    Zhu, Sheng-Kai
    Zhang, Xin
    Zhou, Yuan
    Ni, Ming
    Ma, Rong-Long
    Luo, Gang
    Kong, Zhen-Zhen
    Wang, Gui-Lei
    Cao, Gang
    Li, Hai-Ou
    Guo, Guo-Ping
    CHINESE PHYSICS B, 2023, 33 (01)