scAAGA: Single cell data analysis framework using asymmetric autoencoder with gene attention

被引:64
|
作者
Meng, Rui [1 ]
Yin, Shuaidong [1 ]
Sun, Jianqiang [2 ]
Hu, Huan [3 ]
Zhao, Qi [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Peoples R China
[2] Linyi Univ, Sch Informat Sci & Engn, Linyi 276000, Peoples R China
[3] Fuzhou Univ, Inst Appl Genom, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
scRNA-seq; Deep learning; Gene attention; Data augmentation; COVID-19; RNA;
D O I
10.1016/j.compbiomed.2023.107414
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technique for investigating cellular heterogeneity and structure. However, analyzing scRNA-seq data remains challenging, especially in the context of COVID-19 research. Single-cell clustering is a key step in analyzing scRNA-seq data, and deep learning methods have shown great potential in this area. In this work, we propose a novel scRNA-seq analysis framework called scAAGA. Specifically, we utilize an asymmetric autoencoder with a gene attention module to learn important gene features adaptively from scRNA-seq data, with the aim of improving the clustering effect. We apply scAAGA to COVID19 peripheral blood mononuclear cell (PBMC) scRNA-seq data and compare its performance with state-of-the-art methods. Our results consistently demonstrate that scAAGA outperforms existing methods in terms of adjusted rand index (ARI), normalized mutual information (NMI), and adjusted mutual information (AMI) scores, achieving improvements ranging from 2.8% to 27.8% in NMI scores. Additionally, we discuss a data augmentation technology to expand the datasets and improve the accuracy of scAAGA. Overall, scAAGA presents a robust tool for scRNA-seq data analysis, enhancing the accuracy and reliability of clustering results in COVID-19 research.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder
    Sriram, S.
    Dwivedi, Arun K.
    Chitra, P.
    Sankar, V. Vijay
    Abirami, S.
    Durai, S. J. Rethina
    Pandey, Divya
    Khare, Manoj K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 10395 - 10410
  • [2] DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder
    S. Sriram
    Arun K. Dwivedi
    P. Chitra
    V. Vijay Sankar
    S. Abirami
    S. J. Rethina Durai
    Divya Pandey
    Manoj K. Khare
    Arabian Journal for Science and Engineering, 2022, 47 : 10395 - 10410
  • [3] Fast and precise single-cell data analysis using a hierarchical autoencoder
    Tran, Duc
    Nguyen, Hung
    Tran, Bang
    La Vecchia, Carlo
    Luu, Hung N.
    Nguyen, Tin
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Fast and precise single-cell data analysis using a hierarchical autoencoder
    Duc Tran
    Hung Nguyen
    Bang Tran
    Carlo La Vecchia
    Hung N. Luu
    Tin Nguyen
    Nature Communications, 12
  • [5] scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data
    Zhang, Lin
    Xiang, Haiping
    Wang, Feng
    Chen, Zepeng
    Shen, Mo
    Ma, Jiani
    Liu, Hui
    Zheng, Hongdang
    METHODS, 2024, 229 : 115 - 124
  • [6] Low-loss data compression using deep learning framework with attention-based autoencoder
    Sriram, S.
    Chitra, P.
    Sankar, V. Vijay
    Abirami, S.
    Durai, S. J. Rethina
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2023, 26 (01) : 90 - 100
  • [7] Graph attention autoencoder model with dual decoder for clustering single-cell RNA sequencing data
    Wang, Shudong
    Zhang, Yu
    Zhang, Yuanyuan
    Zhang, Yulin
    Pang, Shanchen
    Su, Jionglong
    Liu, Yingye
    APPLIED INTELLIGENCE, 2024, 54 (06) : 5136 - 5146
  • [8] Semisupervised Generative Autoencoder for Single-Cell Data
    Trung Ngo Trong
    Mehtonen, Juha
    Gonzalez, Gerardo
    Kramer, Roger
    Hautamaki, Ville
    Heinaniemi, Merja
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (08) : 1190 - 1203
  • [9] Asymmetric Integration of Single-Cell Transcriptomic Data using Latent Dirichlet Allocation and Procrustes Analysis
    Eto, Mitsuhiro
    Hirota, Wataru
    Seno, Shigeto
    Matsuda, Hideo
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2129 - 2135
  • [10] Imputation of single-cell gene expression with an autoencoder neural network
    Badsha, Md Bahadur
    Li, Rui
    Liu, Boxiang
    Li, Yang, I
    Xian, Min
    Banovich, Nicholas E.
    Fu, Audrey Qiuyan
    QUANTITATIVE BIOLOGY, 2020, 8 (01) : 78 - 94