An inversion model based on GEOS-Chem for estimating global and China's terrestrial carbon fluxes in 2019

被引:10
|
作者
Wu, Chong -Yuan [1 ]
Zhang, Xiao-Ye [1 ,2 ]
Guo, Li-Feng [1 ]
Zhong, Jun -Ting [1 ]
Wang, De-Ying [1 ]
Miao, Chang -Hong [3 ]
Gao, Xiang [4 ]
Zhang, Xi-Liang [5 ]
机构
[1] Chinese Acad Meteorol Sci, Monitoring & Assessment Ctr GHGs & Carbon, Key Lab Atmospher Chem China Meteorol Adm, Beijing 100081, Peoples R China
[2] Zhejiang Inst Meteorol Sci, Zhejiang Meteorol Bur, Hangzhou 310017, Peoples R China
[3] Henan Univ, Lab Climate Change Mitigat & Carbon Neutral, Zhengzhou 450001, Peoples R China
[4] Zhejiang Univ, State Environm Protect Ctr Coal Fired Air Pollut C, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[5] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China
关键词
CO2; Data assimilation; EnSRF; GEOS-Chem; Terrestrial carbon fluxes; ENSEMBLE DATA ASSIMILATION; ATMOSPHERIC CO2; DIOXIDE EXCHANGE; IN-SITU; EMISSIONS; IMPACT; SINKS; LAND; RETRIEVALS; ECOSYSTEMS;
D O I
10.1016/j.accre.2023.01.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories added the method of assimilating atmospheric CO2 concentrations to invert carbon sources and sinks; however, many global carbon inversion models are not publicly available. In addition, our regional assimilation inversion system, CCMVS-R (China Carbon Monitoring, Verification and Supporting for Regional), needs a global carbon inversion model with higher assimilation efficiency to provide boundary conditions. Here, an inversion model based on the global atmospheric chemistry model GEOS-Chem and a more accurate and easier-to-implement ensemble square root Kalman filter (EnSRF) algorithm is con-structed and used to infer global and China's carbon fluxes in 2019. Atmospheric CO2 concentrations from ObsPack sites and five additional CO2 observational sites from China's Greenhouse Gas Observation Network (CGHGNET) were used for data assimilation to improve the estimate. The inverted annual global terrestrial and oceanic carbon uptake is 2.12 and 2.53 Pg C per year, respectively, accounting for 21.1% and 25.1% of global fossil fuel CO2 emissions. The remaining 5.41 Pg C per year in the atmosphere is consistent with the global atmospheric CO2 growth rates of 5.44 Pg C per year reported by the National Oceanic and Atmospheric Administration (NOAA), showing that the inversion model can provide a reasonable estimate of global-scale natural carbon sinks. The inverted terrestrial carbon sink of China is 0.37 Pg C per year, accounting for approximately 13% of China's fossil CO2 emissions.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 50 条
  • [1] Iodine's impact on tropospheric oxidants: a global model study in GEOS-Chem
    Sherwen, T.
    Evans, M. J.
    Carpenter, L. J.
    Andrews, S. J.
    Lidster, R. T.
    Dix, B.
    Koenig, T. K.
    Sinreich, R.
    Ortega, I.
    Volkamer, R.
    Saiz-Lopez, A.
    Prados-Roman, C.
    Mahajan, A. S.
    Ordonez, C.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (02) : 1161 - 1186
  • [2] Estimating emissions and concentrations of road dust aerosol over China using the GEOS-Chem model
    TANG Ying-Xiao
    LIAO Hong
    FENG Jin
    Atmospheric and Oceanic Science Letters, 2017, 10 (04) : 298 - 305
  • [3] The impacts of modeling global CO2 concentrations with GEOS-Chem using different ocean carbon fluxes
    Zhang Shan
    Tian Xiangjun
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2019, 12 (05) : 343 - 348
  • [4] The impacts of modeling global CO2 concentrations with GEOS-Chem using different ocean carbon fluxes
    ZHANG Shan
    TIAN Xiangjun
    AtmosphericandOceanicScienceLetters, 2019, 12 (05) : 343 - 348
  • [5] Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model
    Wang, Long
    Wang, Shuxiao
    Zhang, Lei
    Wang, Yuxuan
    Zhang, Yanxu
    Nielsen, Chris
    McElroy, Michael B.
    Hao, Jiming
    ENVIRONMENTAL POLLUTION, 2014, 190 : 166 - 175
  • [6] Implementation and evaluation of an array of chemical solvers in the Global Chemical Transport Model GEOS-Chem
    Eller, P.
    Singh, K.
    Sandu, A.
    Bowman, K.
    Henze, D. K.
    Lee, M.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2009, 2 (02) : 89 - 96
  • [7] Comparisons of the vertical distributions of aerosols in the CALIPSO and GEOS-Chem datasets in China (vol 3, 100036, 2019)
    Li, S.
    ATMOSPHERIC ENVIRONMENT-X, 2020, 8
  • [8] Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport
    Zhang, Bo
    Liu, Hongyu
    Crawford, James H.
    Chen, Gao
    Fairlie, T. Duncan
    Chambers, Scott
    Kang, Chang-Hee
    Williams, Alastair G.
    Zhang, Kai
    Considine, David B.
    Sulprizio, Melissa P.
    Yantosca, Robert M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (03) : 1861 - 1887
  • [9] A general parallelization approach to improve computation efficiency in a global chemical transport model (GEOS-Chem)
    Park, Rokjin J.
    Youn, Daeok
    Yoo, Sung Hoon
    Han, Dong Seok
    Kang, Boo Joong
    Im, Eul Gyu
    GEOCHEMICAL JOURNAL, 2010, 44 (04) : 323 - 329
  • [10] Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere
    An, Yuan
    Wang, Xianhua
    Ye, Hanhan
    Shi, Hailiang
    Wu, Shichao
    Li, Chao
    Sun, Erchang
    REMOTE SENSING, 2024, 16 (08)