Graph neural networks for construction applications

被引:21
|
作者
Jia, Yilong [1 ]
Wang, Jun [2 ]
Shou, Wenchi [2 ]
Hosseini, M. Reza [1 ]
Bai, Yu [3 ]
机构
[1] Deakin Univ, Fac Sci Engn & Built Environm, Sch Architecture & Built Environm, Geelong, Vic 3220, Australia
[2] Western Sydney Univ, Sch Engn Design & Built Environm, Penrith, NSW 2751, Australia
[3] Monash Univ, Fac Engn, Dept Civil Engn, Clayton, Vic 3800, Australia
关键词
Graph neural networks; Machine learning; Artificial intelligence; Architecture; Engineering; CONVOLUTIONAL NETWORK; GENERATIVE DESIGN; FRAMEWORK;
D O I
10.1016/j.autcon.2023.104984
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Graph Neural Networks (GNNs) have emerged as a promising solution for effectively handling non-Euclidean data in construction, including building information models (BIM) and scanned point clouds. However, despite their potential, there is a lack of comprehensive scholarly work providing a holistic understanding of the application of GNNs in the construction domain. This paper addresses this gap by conducting a thorough review of 34 publications on GNNs in construction, presenting a comprehensive overview of the current research landscape. By analyzing the existing literature, this paper aims to identify opportunities and challenges for further advancing the application of GNNs in construction. The findings from this review shed light on diverse approaches for constructing graph data from common construction data types and demonstrate the significant potential of GNNs for the industry. Moreover, this paper contributes to the existing body of knowledge by increasing awareness of the current state of GNNs in the construction industry and offering practical recommendations to overcome challenges in real-world practice.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Survey of Graph Neural Networks and Applications
    Liang, Fan
    Qian, Cheng
    Yu, Wei
    Griffith, David
    Golmie, Nada
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [2] POTENTIAL APPLICATIONS OF NEURAL NETWORKS IN CONSTRUCTION
    MOSELHI, O
    HEGAZY, T
    FAZIO, P
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 1992, 19 (03) : 521 - 529
  • [3] Graph Neural Networks and Their Current Applications in Bioinformatics
    Zhang, Xiao-Meng
    Liang, Li
    Liu, Lin
    Tang, Ming-Jing
    FRONTIERS IN GENETICS, 2021, 12
  • [4] Graph Neural Networks: Foundation, Frontiers and Applications
    Wu, Lingfei
    Cui, Peng
    Pei, Jian
    Zhao, Liang
    Guo, Xiaojie
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4840 - 4841
  • [5] Graph neural networks: A review of methods and applications
    Zhou, Jie
    Cui, Ganqu
    Hu, Shengding
    Zhang, Zhengyan
    Yang, Cheng
    Liu, Zhiyuan
    Wang, Lifeng
    Li, Changcheng
    Sun, Maosong
    AI OPEN, 2020, 1 : 57 - 81
  • [6] Graph neural networks: A review of methods and applications
    Zhou, Jie
    Cui, Ganqu
    Hu, Shengding
    Zhang, Zhengyan
    Yang, Cheng
    Liu, Zhiyuan
    Wang, Lifeng
    Li, Changcheng
    Sun, Maosong
    AI OPEN, 2020, 1 : 57 - 81
  • [7] Graph Neural Networks: Foundation, Frontiers and Applications
    Wu, Lingfei
    Cui, Peng
    Pei, Jian
    Zhao, Liang
    Guo, Xiaojie
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 5831 - 5832
  • [8] A survey of graph neural networks and their industrial applications
    Lu, Haoran
    Wang, Lei
    Ma, Xiaoliang
    Cheng, Jun
    Zhou, Mengchu
    NEUROCOMPUTING, 2025, 614
  • [9] Graph pooling in graph neural networks: methods and their applications in omics studies
    Wang, Yan
    Hou, Wenju
    Sheng, Nan
    Zhao, Ziqi
    Liu, Jialin
    Huang, Lan
    Wang, Juexin
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (11)
  • [10] On Graph Construction for Classification of Clinical Trials Protocols Using Graph Neural Networks
    Ferdowsi, Sohrab
    Copara, Jenny
    Gouareb, Racha
    Borissov, Nikolay
    Jaume-Santero, Fernando
    Amini, Poorya
    Teodoro, Douglas
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2022, 2022, 13263 : 249 - 259