A stochastic log-logistic diffusion process: Statistical computational aspects and application to real data

被引:3
|
作者
El Azri, Abdenbi [1 ,2 ]
Ahmed, Nafidi [1 ]
机构
[1] Hassan First Univ Settat, Dept Math & Comp Sci, Lab Syst Modelizat & Anal Decis Support, Natl Sch Appl Sci, Berrechid, Morocco
[2] Hassan First Univ Settat, Natl Sch Appl Sci, Dept Math & Comp Sci, Lab Syst Modelizat & Anal Decis Support, BP 218, Berrechid 26103, Morocco
关键词
Log-logistic growth; maximum likelihood estimation; simulated annealing method; stochastic growth models; stochastic modeling; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETERS; MODEL; INFERENCE; GROWTH;
D O I
10.1080/15326349.2023.2241070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article introduces a new stochastic diffusion process based on the theory of diffusion processes whose mean function is proportional to the log-logistic growth curve. The main characteristics of the process are analyzed, including the transition probability density function, the mean functions and in particular, the auto-correlation function between two times of the process. The parameters of the process are estimated by maximum likelihood method using discrete sampling. The simulated annealing algorithm is applied after bounding the parametric space by a strategy procedure to solve the likelihood equations. The behavior of the diffusion process here derived is finally applied to study an example for the growth data of a microorganism culture.
引用
收藏
页码:261 / 277
页数:17
相关论文
共 50 条
  • [1] McDonald log-logistic distribution with an application to breast cancer data
    M. H. Tahir
    Muhammad Mansoor
    Muhammad Zubair
    G. G. Hamedani
    Journal of Statistical Theory and Applications, 2014, 13 (1): : 65 - 82
  • [2] McDonald log-logistic distribution with an application to breast cancer data
    Tahir, M. H.
    Mansoor, Muhammad
    Zubair, Muhammad
    Hamedani, G. G.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2014, 13 (01): : 65 - 82
  • [3] Application of Odd Lomax log-logistic distribution to cancer data
    Kailembo, Benson Benedicto
    Gadde, Srinivasa Rao
    Kirigiti, Peter Josephat
    HELIYON, 2024, 10 (06)
  • [4] A τ-power stochastic gamma diffusion process: Computational statistical inference and simulation aspects. A real example
    Gutierrez-Jaimez, R.
    Gutierrez-Sanchez, R.
    Nafidi, A.
    Ramos-Abalos, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1576 - 1588
  • [5] The Extended Log-Logistic Distribution: Properties and Application
    Lima, Stenio R.
    Cordeiro, Gauss M.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2017, 89 (01): : 3 - 17
  • [6] LOG-LOGISTIC WEIBULL-GEOMETRIC DISTRIBUTION WITH APPLICATION TO LIFETIME DATA
    Khan, Adil H.
    Jan, T. R.
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2019, 12 (01): : 187 - 204
  • [7] Estimation of parameters in logistic and log-logistic distribution with grouped data
    Yan Yan Zhou
    Jie Mi
    Shengru Guo
    Lifetime Data Analysis, 2007, 13 : 421 - 429
  • [8] Estimation of parameters in logistic and log-logistic distribution with grouped data
    Zhou, Yan Yan
    Mi, Jie
    Guo, Shengru
    LIFETIME DATA ANALYSIS, 2007, 13 (03) : 421 - 429
  • [9] Alpha Power Transformed Log-Logistic Distribution with Application to Breaking Stress Data
    Aldahlan, Maha A.
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [10] SAMPLING PROPERTIES OF ESTIMATORS OF THE LOG-LOGISTIC DISTRIBUTION WITH APPLICATION TO CANADIAN PRECIPITATION DATA
    SHOUKRI, MM
    MIAN, IUH
    TRACY, DS
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1988, 16 (03): : 223 - 236