Bibliometric and visualized analysis of 3D printing bioink in bone tissue engineering

被引:2
|
作者
Xu, Kaihao [1 ]
Yu, Sanyang [1 ]
Wang, Zhenhua [2 ]
Zhang, Zhichang [3 ]
Zhang, Zhongti [1 ]
机构
[1] China Med Univ, Sch & Hosp Stomatol, VIP Dept, Shenyang, Peoples R China
[2] China Med Univ, Sch Life Sci, Dept Physiol, Shenyang, Peoples R China
[3] China Med Univ, Sch Intelligent Med, Dept Comp, Shenyang, Peoples R China
关键词
bioink; hydrogel; 3D printing; bone tissue engineering; biomaterial; bibliometrics; data visualization; BIOMATERIALS; STRATEGIES; SCAFFOLDS; GRAFTS; REPAIR;
D O I
10.3389/fbioe.2023.1232427
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Applying 3D printed bioink to bone tissue engineering is an emerging technology for restoring bone tissue defects. This study aims to evaluate the application of 3D printing bioink in bone tissue engineering from 2010 to 2022 through bibliometric analysis, and to predict the hotspots and developing trends in this field.Methods: We retrieved publications from Web of Science from 2010 to 2022 on 8 January 2023. We examined the retrieved data using the bibliometrix package in R software, and VOSviewer and CiteSpace were used for visualizing the trends and hotspots of research on 3D printing bioink in bone tissue engineering.Results: We identified 682 articles and review articles in this field from 2010 to 2022. The journal Biomaterials ranked first in the number of articles published in this field. In 2016, an article published by Holzl, K in the Biofabrication journal ranked first in number of citations. China ranked first in number of articles published and in single country publications (SCP), while America surpassed China to rank first in multiple country publications (MCP). In addition, a collaboration network analysis showed tight collaborations among China, America, South Korea, Netherlands, and other countries, with the top 10 major research affiliations mostly from these countries. The top 10 high-frequency words in this field are consistent with the field's research hotspots. The evolution trend of the discipline indicates that most citations come from Physics/Materials/Chemistry journals. Factorial analysis plays an intuitive role in determining research hotspots in this sphere. Keyword burst detection shows that chitosan and endothelial cells are emerging research hotspots in this field.Conclusion: This bibliometric study maps out a fundamental knowledge structure including countries, affiliations, authors, journals and keywords in this field of research from 2010 to 2022. This study fills a gap in the field of bibliometrics and provides a comprehensive perspective with broad prospects for this burgeoning research area.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bibliometric and visualized analysis of 3D printing bioink in bone tissue engineering
    Xu, Kaihao
    Yu, Sanyang
    Wang, Zhenhua
    Zhang, Zhichang
    Zhang, Zhongti
    Frontiers in Bioengineering and Biotechnology, 2023, 11
  • [2] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [3] Application of 3D printing in bone tissue engineering
    Bose, Susmita
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [4] Bone tissue engineering using 3D printing
    Bose, Susmita
    Vahabzadeh, Sahar
    Bandyopadhyay, Amit
    MATERIALS TODAY, 2013, 16 (12) : 496 - 504
  • [5] 3D Printing of Bioceramics for Bone Tissue Engineering
    Zafar, Muhammad Jamshaid
    Zhu, Dongbin
    Zhang, Zhengyan
    MATERIALS, 2019, 12 (20)
  • [6] Research landscape of 3D printing in bone regeneration and bone repair: A bibliometric and visualized analysis from 2012 to 2022
    Yang, Zhen
    Li, Hao
    Lin, Jianjing
    Xing, Dan
    Li, Jiao Jiao
    Cribbin, Elise M.
    Kim, Alice M.
    He, Zihao
    Li, Hui
    Guo, Weimin
    Zhang, Licheng
    Lin, Jianhao
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (04)
  • [7] 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering
    Chang, Hyun Kyung
    Yang, Dae Hyeok
    Ha, Mi Yeon
    Kim, Hyun Joo
    Kim, Chun Ho
    Kim, Sae Hyun
    Choi, Jae Won
    Chun, Heung Jae
    CARBOHYDRATE POLYMERS, 2022, 287
  • [8] Application of 3D printing technology in bone tissue engineering
    Kang Ji
    Yanen Wang
    Qinghua Wei
    Kun Zhang
    Anguo Jiang
    Yiwen Rao
    Xianxuan Cai
    Bio-Design and Manufacturing, 2018, 1 : 203 - 210
  • [9] Application of 3D printing technology in bone tissue engineering
    Ji, Kang
    Wang, Yanen
    Wei, Qinghua
    Zhang, Kun
    Jiang, Anguo
    Rao, Yiwen
    Cai, Xianxuan
    BIO-DESIGN AND MANUFACTURING, 2018, 1 (03) : 203 - 210
  • [10] Progress in 3D printing for bone tissue engineering: a review
    Lan, Weiwei
    Huang, Xiaobo
    Huang, Di
    Wei, Xiaochun
    Chen, Weiyi
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (27) : 12685 - 12709