Spatiotemporal resolution in high-speed atomic force microscopy for studying biological macromolecules in action

被引:18
|
作者
Umeda, Kenichi [1 ]
McArthur, Steven J. [1 ]
Kodera, Noriyuki [1 ]
机构
[1] Kanazawa Univ, Nano Life Sci Inst WPI NanoLSI, Kanazawa 9201192, Japan
关键词
atomic force microscopy; single-molecule imaging; biophysics; proteins; nucleic acids; biomolecules; SILICON (111)-(7X7) SURFACE; PROTEIN INTERACTIONS; DYNAMIC-BEHAVIOR; REAL-TIME; AFM; REVEALS; BACTERIORHODOPSIN; RECONSTRUCTION; VISUALIZATION; LOCALIZATION;
D O I
10.1093/jmicro/dfad011
中图分类号
TH742 [显微镜];
学科分类号
摘要
High-speed atomic force microscopy (HS-AFM) is a unique approach that allows direct real-time visualization of biological macromolecules in action under near-physiological conditions, without any chemical labeling. Typically, the temporal resolution is sub-100 ms, and the spatial resolution is 2-3 nm in the lateral direction and similar to 0.1 nm in the vertical direction. A wide range of biomolecular systems and their dynamic processes have been studied by HS-AFM, providing deep mechanistic insights into how biomolecules function. However, the level of mechanistic detail gleaned from an HS-AFM experiment critically depends on the spatiotemporal resolution of the system. In this review article, we explain the principle of HS-AFM and describe how the resolution is determined. We also discuss recent attempts to improve the resolution of HS-AFM to further extend the observable range of biological phenomena.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 50 条
  • [1] A high-speed atomic force microscope for studying biological macromolecules in action
    Ando, T
    Kodera, N
    Naito, Y
    Kinoshita, T
    Furuta, K
    Toyoshima, YY
    CHEMPHYSCHEM, 2003, 4 (11) : 1196 - 1202
  • [2] A high-speed atomic force microscope for studying biological macromolecules in action
    Ando, T
    Kodera, N
    Maruyama, D
    Takai, E
    Saito, K
    Toda, A
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (7B): : 4851 - 4856
  • [3] A high-speed atomic force microscope for studying biological macromolecules
    Ando, T
    Kodera, N
    Takai, E
    Maruyama, D
    Saito, K
    Toda, A
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) : 12468 - 12472
  • [4] Studying biological membranes with extended range high-speed atomic force microscopy
    Nievergelt, Adrian P.
    Erickson, Blake W.
    Hosseini, Nahid
    Adams, Jonathan D.
    Fantner, Georg E.
    SCIENTIFIC REPORTS, 2015, 5
  • [5] Studying biological membranes with extended range high-speed atomic force microscopy
    Adrian P. Nievergelt
    Blake W. Erickson
    Nahid Hosseini
    Jonathan D. Adams
    Georg E. Fantner
    Scientific Reports, 5
  • [6] Biological physics by high-speed atomic force microscopy
    Casuso, Ignacio
    Redondo-Morata, Lorena
    Rico, Felix
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2186):
  • [7] Correction: Corrigendum: Studying biological membranes with extended range high-speed atomic force microscopy
    Adrian P. Nievergelt
    Blake W. Erickson
    Nahid Hosseini
    Jonathan D. Adams
    Georg E. Fantner
    Scientific Reports, 6
  • [8] High-Speed Atomic Force Microscopy Tracks Toxin Action
    Scheuring, Simon
    BIOPHYSICAL JOURNAL, 2013, 105 (06) : 1292 - 1292
  • [9] High-Speed Atomic Force Microscopy
    Ando, Toshio
    Uchihashi, Takayuki
    Kodera, Noriyuki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (08)
  • [10] High-speed atomic force microscopy
    Ando, Toshio
    MICROSCOPY, 2013, 62 (01) : 81 - 93