Posterior Covariance Information Criterion for Weighted Inference

被引:0
|
作者
Iba, Yukito [1 ]
Yano, Keisuke [1 ]
机构
[1] Inst Stat Math, Tokyo 1908562, Japan
关键词
CROSS-VALIDATION; MODEL; SHIFT;
D O I
10.1162/neco_a_01592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For predictive evaluation based on quasi-posterior distributions, we develop a new information criterion, the posterior covariance information criterion (PCIC). PCIC generalizes the widely applicable information criterion (WAIC) so as to effectively handle predictive scenarios where likelihoods for the estimation and the evaluation of the model may be different. A typical example of such scenarios is the weighted likelihood inference, including prediction under covariate shift and counterfactual prediction. The proposed criterion uses a posterior covariance form and is computed by using only one Markov chain Monte Carlo run. Through numerical examples, we demonstrate how PCIC can apply in practice. Further, we show that PCIC is asymptotically unbiased to the quasi-Bayesian generalization error under mild conditions in weighted inference with both regular and singular statistical models.
引用
收藏
页码:1340 / 1361
页数:22
相关论文
共 50 条
  • [1] Posterior Averaging Information Criterion
    Zhou, Shouhao
    ENTROPY, 2023, 25 (03)
  • [2] Improving weighted information criterion by using optimization
    Aladag, Cagdas Hakan
    Egrioglu, Erol
    Gunay, Suleyman
    Basaran, Murat A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) : 2683 - 2687
  • [3] Enhanced-resolution SAR tomography using the weighted covariance fitting criterion
    Martin-del-Campo-Becerra, Gustavo Daniel
    Reigber, Andreas
    Nannini, Matteo
    13TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR, EUSAR 2021, 2021, : 66 - 70
  • [4] Statistical inference by stereo vision: Geometric information criterion
    Kanazawa, Y
    Kanatani, K
    IROS 96 - PROCEEDINGS OF THE 1996 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS - ROBOTIC INTELLIGENCE INTERACTING WITH DYNAMIC WORLDS, VOLS 1-3, 1996, : 1272 - 1279
  • [5] Fast principal component extraction by a weighted information criterion
    Ouyang, S
    Bao, Z
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (08) : 1994 - 2002
  • [6] The Akaike information criterion in weighted regression of immittance data
    Ingdal, Mats
    Johnsen, Roy
    Harrington, David A.
    ELECTROCHIMICA ACTA, 2019, 317 : 648 - 653
  • [7] Akaike's Information Criterion for Stoichiometry Inference of Supramolecular Complexes
    Ikemoto, Koki
    Takahashi, Kanato
    Ozawa, Takeaki
    Isobe, Hiroyuki
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (14)
  • [8] Asymptotic post-selection inference for the Akaike information criterion
    Charkhi, Ali
    Claeskens, Gerda
    BIOMETRIKA, 2018, 105 (03) : 645 - 664
  • [9] Jump information criterion for statistical inference in estimating discontinuous curves
    Xia, Zhiming
    Qiu, Peihua
    BIOMETRIKA, 2015, 102 (02) : 397 - 408
  • [10] Quantifying lost information due to covariance matrix estimation in parameter inference
    Sellentin, Elena
    Heavens, Alan F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) : 4658 - 4665