Subsequence and distant supervision based active learning for relation extraction of Chinese medical texts

被引:1
|
作者
Ye, Qi [1 ]
Cai, Tingting [1 ]
Ji, Xiang [1 ]
Ruan, Tong [1 ]
Zheng, Hong [1 ]
机构
[1] East China Univ Sci & Technol, Sch Informat Sci & Technol, Shanghai 200237, Peoples R China
关键词
Active learning; Sequence tagging; Relation extraction; Distant supervision; Medical texts;
D O I
10.1186/s12911-023-02127-1
中图分类号
R-058 [];
学科分类号
摘要
In recent years, relation extraction on unstructured texts has become an important task in medical research. However, relation extraction requires a large amount of labeled corpus, manually annotating sequences is time consuming and expensive. Therefore, efficient and economical methods for annotating sequences are required to ensure the performance of relational extraction. This paper proposes a method of subsequence and distant supervision based active learning. The method is annotated by selecting information-rich subsequences as a sampling unit instead of the full sentences in traditional active learning. Additionally, the method saves the labeled subsequence texts and their corresponding labels in a dictionary which is continuously updated and maintained, and pre-labels the unlabeled set through text matching based on the idea of distant supervision. Finally, the method combines a Chinese-RoBERTa-CRF model for relation extraction in Chinese medical texts. Experimental results test on the CMeIE dataset achieves the best performance compared to existing methods. And the best F1 value obtained between different sampling strategies is 55.96%.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Subsequence and distant supervision based active learning for relation extraction of Chinese medical texts
    Qi Ye
    Tingting Cai
    Xiang Ji
    Tong Ruan
    Hong Zheng
    BMC Medical Informatics and Decision Making, 23
  • [2] Curriculum learning for distant supervision relation extraction
    Liu Qiongxin
    Wang Peng
    Wang Jiasheng
    Ma Jing
    JOURNAL OF WEB SEMANTICS, 2020, 61-62 (61-62):
  • [3] A Brief Survey of Relation Extraction Based on Distant Supervision
    Shi, Yong
    Xiao, Yang
    Niu, Lingfeng
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 293 - 303
  • [4] Revisiting Distant Supervision for Relation Extraction
    Jiang, Tingsong
    Liu, Jing
    Lin, Chin-Yew
    Sui, Zhifang
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 3580 - 3585
  • [5] Global Distant Supervision for Relation Extraction
    Han, Xianpei
    Sun, Le
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2950 - 2956
  • [6] Distant Supervision for Relation Extraction with Ranking-Based Methods
    Xiang, Yang
    Chen, Qingcai
    Wang, Xiaolong
    Qin, Yang
    ENTROPY, 2016, 18 (06)
  • [7] Robust Distant Supervision Relation Extraction via Deep Reinforcement Learning
    Qin, Pengda
    Xu, Weiran
    Wang, William Yang
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 2137 - 2147
  • [8] Distant Supervision for Relation Extraction with Type Constraint
    Ye, Yuxin
    Zhu, Zhaolong
    Ouyang, Dantong
    Cui, Xianji
    JOURNAL OF INTERNET TECHNOLOGY, 2014, 15 (07): : 1133 - 1142
  • [9] Relation Extraction Using Distant Supervision: A Survey
    Smirnova, Alisa
    Cudre-Mauroux, Philippe
    ACM COMPUTING SURVEYS, 2019, 51 (05)
  • [10] Biomedical Relation Extraction Using Distant Supervision
    Boudjellal, Nada
    Zhang, Huaping
    Khan, Asif
    Ahmad, Arshad
    SCIENTIFIC PROGRAMMING, 2020, 2020