Deep-learning potentials for proton transport in double-sided graphanol

被引:1
|
作者
Achar, Siddarth K. [1 ,2 ]
Bernasconi, Leonardo [3 ]
Alvarez, Juan J. [2 ]
Johnson, J. Karl [2 ]
机构
[1] Univ Pittsburgh, Computat Modeling & Simulat Program, 326 Eberly Hall, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Chem & Petr Engn, 940 Benedum Hall, Pittsburgh, PA 15261 USA
[3] Univ Pittsburgh, Ctr Res Comp, 4420 Bayard St, Pittsburgh, PA 15213 USA
关键词
GENERALIZED GRADIENT APPROXIMATION; IONIC-LIQUID; CONDUCTING MEMBRANES; THERMAL FLUCTUATIONS;
D O I
10.1557/s43578-023-01141-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is a need to develop new materials for proton exchange membranes that can operate at higher temperatures and low humidities. Designing and evaluating novel membrane materials using density functional theory (DFT) is infeasible because of length and time scale limitations. We developed a deep-learning potential (DP) to evaluate double-sided graphanol (DSG), which is a potential anhydrous proton conducting material. We trained our DP on DFT data using an active learning approach. Our DP is computationally efficient and has near-DFT accuracy. We analyzed DSG by computing phonon properties, thermal fluctuations, and self-diffusivity using our DP. Our results for DSG are compared with single-sided graphanol (SSG). We observed lower thermal fluctuations and similar proton self-diffusivity at 800 K in DSG compared to SSG. Our DP simulations show that structural differences in DSG compared to SSG do not impact proton transport. DSG is a promising membrane material deserving of synthetic efforts.
引用
收藏
页码:5114 / 5124
页数:11
相关论文
共 50 条
  • [1] Deep-learning potentials for proton transport in double-sided graphanol
    Siddarth K. Achar
    Leonardo Bernasconi
    Juan J. Alvarez
    J. Karl Johnson
    Journal of Materials Research, 2023, 38 : 5114 - 5124
  • [2] Multiview Learning With Robust Double-Sided Twin SVM
    Ye, Qiaolin
    Huang, Peng
    Zhang, Zhao
    Zheng, Yuhui
    Fu, Liyong
    Yang, Wankou
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 12745 - 12758
  • [3] Electron transport in coupled quantum wells with double-sided doping
    Galiev, GB
    Kaminskii, VE
    Mokerov, VG
    Kul'bachinskii, VA
    Lunin, RA
    Vasil'evskii, IS
    Derkach, AV
    SEMICONDUCTORS, 2003, 37 (06) : 686 - 691
  • [4] Electron transport in coupled quantum wells with double-Sided doping
    G. B. Galiev
    V. E. Kaminskii
    V. G. Mokerov
    V. A. Kul’bachinskii
    R. A. Lunin
    I. S. Vasil’evskii
    A. V. Derkach
    Semiconductors, 2003, 37 : 686 - 691
  • [5] A DOUBLE-SIDED SILICON STRIP DETECTOR SYSTEM FOR PROTON RADIOACTIVITY STUDIES
    SELLIN, PJ
    WOODS, PJ
    BRANFORD, D
    DAVINSON, T
    DAVIS, NJ
    IRELAND, DG
    LIVINGSTON, K
    PAGE, RD
    SHOTTER, AC
    HOFMANN, S
    HUNT, RA
    JAMES, AN
    HOTCHKIS, MAC
    FREER, MA
    THOMAS, SL
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1992, 311 (1-2): : 217 - 223
  • [6] Deep-learning neural network potentials for titanate perovskites
    Wisesa, Pandu
    Tadano, Terumasa
    Saidi, Wissam A.
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 250
  • [7] Multi-Agent Deep Reinforcement Learning for Simulating Centralized Double-Sided Auction Electricity Market
    Yin, Baocai
    Weng, Haoen
    Hu, Yongli
    Xi, Jiayang
    Ding, Pinggang
    Liu, Jia
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 518 - 529
  • [8] Deep-learning the Latent Space of Light Transport
    Hermosilla, P.
    Maisch, S.
    Ritschel, T.
    Ropinski, T.
    COMPUTER GRAPHICS FORUM, 2019, 38 (04) : 207 - 217
  • [9] An Explainable Deep-learning Model of Proton Auroras on Mars
    Dhuri, Dattaraj B.
    Atri, Dimitra
    Alhantoobi, Ahmed
    PLANETARY SCIENCE JOURNAL, 2024, 5 (06):
  • [10] Characterization of an NTD Double-Sided Silicon Strip Detector Employing a Pulsed Proton Microbeam
    Duenas, J. A.
    Pasquali, G.
    Acosta, L.
    Parsani, T.
    Riccio, F.
    Carraresi, L.
    Taccetti, F.
    Castoldi, A.
    Guazzoni, C.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (09) : 2551 - 2560