Urban sound classification using neural networks on embedded FPGAs

被引:1
|
作者
Belloch, Jose A. [1 ]
Coronado, Raul [1 ]
Valls, Oscar [2 ]
del Amor, Rocio [2 ]
Leon, German [3 ]
Naranjo, Valery [2 ]
Dolz, Manuel F. [3 ]
Amor-Martin, Adrian [4 ]
Pinero, Gema [5 ]
机构
[1] Univ Carlos III Madrid, Dept Tecnol Elect, Avda Univ 30, Leganes 28911, Madrid, Spain
[2] Univ Politecn Valencia, Inst Univ Invest Tecnol Centrada Ser Humano HUMAN, Camino Vera S-N, Valencia 46022, Spain
[3] Univ Jaume I Castellon, Dept Ingn & Ciencia Comp, Avda Sos Baynat s-n, Castellon de La Plana 12071, Spain
[4] Univ Carlos III Madrid, Dept Teoria Senal & Comunicac, Avda Univ 30, Madrid 28911, Spain
[5] Univ Politecn Valencia, Inst Telecomunicac & Aplicac Multimedia, Camino Vera S-N, E-46022 Valencia, Spain
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 09期
关键词
FPGA; Sound classification; Hardware acceleration; Convolutional neural networks; Deep learning;
D O I
10.1007/s11227-024-05947-8
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Sound classification using neural networks has recently produced very accurate results. A large number of different applications use this type of sound classifiers such as controlling and monitoring the type of activity in a city or identifying different types of animals in natural environments. While traditional acoustic processing applications have been developed on high-performance computing platforms equipped with expensive multi-channel audio interfaces, the Internet of Things (IoT) paradigm requires the use of more flexible and energy-efficient systems. Although software-based platforms exist for implementing general-purpose neural networks, they are not optimized for sound classification, wasting energy and computational resources. In this work, we have used FPGAs to develop an ad hoc system where only the hardware needed for our application is synthesized, resulting in faster and more energy-efficient circuits. The results show that our developments are accelerated by a factor of 35 compared to a software-based implementation on a Raspberry Pi.
引用
收藏
页码:13176 / 13186
页数:11
相关论文
共 50 条
  • [1] Convolutional Recurrent Neural Networks for Urban Sound Classification using Raw Waveforms
    Sang, Jonghee
    Park, Soomyung
    Lee, Junwoo
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2444 - 2448
  • [2] Implementing NEF Neural Networks on Embedded FPGAs
    Morcos, Benjamin
    Stewart, Terrence C.
    Eliasmith, Chris
    Kapre, Nachiket
    2018 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT 2018), 2018, : 25 - 32
  • [3] Sound Classification Using Convolutional Neural Networks
    Jaiswal, Kaustumbh
    Patel, Dhairya Kalpeshbhai
    2018 SEVENTH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2018, : 81 - 84
  • [4] A hybrid system for embedded machine vision using FPGAs and neural networks
    Prieto, Miguel S.
    Allen, Alastair R.
    MACHINE VISION AND APPLICATIONS, 2009, 20 (06) : 379 - 394
  • [5] A hybrid system for embedded machine vision using FPGAs and neural networks
    Miguel S. Prieto
    Alastair R. Allen
    Machine Vision and Applications, 2009, 20 : 379 - 394
  • [6] Environmental sound sources classification using neural networks
    Stoeckle, S
    Pah, N
    Kumar, DK
    McLachlan, N
    ANZIIS 2001: PROCEEDINGS OF THE SEVENTH AUSTRALIAN AND NEW ZEALAND INTELLIGENT INFORMATION SYSTEMS CONFERENCE, 2001, : 399 - 403
  • [7] An Automated Workflow for Generation of Neural Networks for Embedded FPGAs on IoT
    Muyal, Thomas Araujo
    Zuffo, Marcelo Knorich
    2022 SYMPOSIUM ON INTERNET OF THINGS, SIOT, 2022,
  • [8] Sound classification and function approximation using spiking neural networks
    Amin, HH
    Fujii, RH
    ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, 2005, 3644 : 621 - 630
  • [9] Robust Sound Event Classification Using Deep Neural Networks
    McLoughlin, Ian
    Zhang, Haomin
    Xie, Zhipeng
    Song, Yan
    Xiao, Wei
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2015, 23 (03) : 540 - 552
  • [10] Using FPGAs to implement artificial neural networks
    Granado, J. M.
    Vega, M. A.
    Perez, R.
    Sanchez, J. M.
    Gomez, J. A.
    2006 13TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2006, : 934 - 937