A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage

被引:12
|
作者
Tafone, Alessio [1 ]
Romagnoli, Alessandro [1 ,2 ]
机构
[1] Nanyang Technol Univ, Surbana Jurong NTU Corp Lab, Singapore, Singapore
[2] Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Electrical energy storage; Liquid air energy storage (LAES); Packed bed; Thermal energy storage (TES); Phase change material (PCM); Carnot battery; PHASE-CHANGE MATERIALS; SELECTION METHODOLOGY; PERFORMANCE; TECHNOLOGIES;
D O I
10.1016/j.energy.2023.128203
中图分类号
O414.1 [热力学];
学科分类号
摘要
Liquid air energy storage system (LAES) is a promising Carnot battery's configuration that includes thermal energy storage systems to thermally connect the charge and discharge phases. Among them, the high grade cold storage (HGCS) is of paramount importance due to the waste cold recovery of the liquid air regasification process. As of now, most of the literature studies on LAES designed to store the cryogenic energy using sensible heat material and only few works (including one recently carried out by the authors) proposed the implementation of phase change materials (PCMs) as alternative promising solution. This paper goes a step further numerically investigating a novel configuration of the HGCS system utilizing a cascade of multiple PCMs in place of the single PCM HGCS. By enhancing the thermal buffer effect typical of PCM media, the cascaded HGCS augments both the capacity ratio of the charge phase (0.87 vs 0.81) and the utilization factor of the discharge phase (0.87% vs 0.80%). As a result, the novel LAES system based on cascaded PCMs is capable to achieve a liquefaction specific consumption of 0.27 kWhe/kgLA, increasing thus the liquefaction performance of the single PCM HGCS by 6%.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A novel liquid air energy storage system using a combination of sensible and latent heat storage
    Ryu, Ju-Yeol
    Alford, Adrian
    Lewis, Graham
    Ding, Yulong
    Li, Yunren
    Ahmad, Abdalqader
    Kim, Hyunjong
    Park, Sung-Ho
    Park, Jong-Po
    Branch, Simon
    Yu, Seunghan
    Ryu, Changkook
    APPLIED THERMAL ENGINEERING, 2022, 203
  • [2] Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system
    Chen, Jiaxiang
    Yang, Luwei
    An, Baolin
    Hu, Jianying
    Wang, Junjie
    ENERGY, 2022, 242
  • [3] Experimental investigations on a sensible heat thermal energy storage system towards the design of cascaded latent heat storage system
    Pranesh, V
    Velraj, R.
    Kumaresan, V
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2023, 20 (01) : 63 - 76
  • [4] Cold Storage Solutions for a Liquid Air Energy Storage System
    Trommler, Gregor
    Klupsch, Martin
    Eggers, Detlef
    Bobsin, Philipp
    Wendt, Christian
    Bohne, Niklas
    15TH CRYOGENICS 2019 IIR INTERNATIONAL CONFERENCE, 2019, : 306 - 310
  • [5] Performance Analysis and Optimization of Compressed Air Energy Storage Integrated with Latent Thermal Energy Storage
    Yu, Xiaoli
    Dou, Wenbo
    Zhang, Zhiping
    Hong, Yan
    Qian, Gao
    Li, Zhi
    ENERGIES, 2024, 17 (11)
  • [6] NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF A CASCADED LATENT HEAT THERMAL ENERGY STORAGE
    Li, Pengda
    Xu, Chao
    Liao, Zhirong
    Ju, Xing
    Ye, Feng
    FRONTIERS IN HEAT AND MASS TRANSFER, 2020, 15 (01): : 1 - 10
  • [7] Investigation of a latent heat thermal energy storage system
    Morcos, V.H., 1600, (07): : 2 - 3
  • [8] Performance evaluation of novel tapered shell and tube cascaded latent heat thermal energy storage
    Murthy, B. V. Rudra
    Nidhul, Kottayat
    Gumtapure, Veershetty
    SOLAR ENERGY, 2021, 214 : 377 - 392
  • [9] Dynamic modelling of a compressed heat energy storage (CHEST) system integrated with a cascaded phase change materials thermal energy storage
    Tafone, Alessio
    Pili, Roberto
    Andersen, Martin Pihl
    Romagnoli, Alessandro
    APPLIED THERMAL ENGINEERING, 2023, 226
  • [10] Experimental comparison of the dynamic operations of a sensible heat thermal energy storage and a latent heat thermal energy storage system
    Shobo, A. B.
    Mawire, Ashmore
    PROCEEDINGS OF THE 2017 TWENTY FIFTH INTERNATIONAL CONFERENCE ON THE DOMESTIC USE OF ENERGY (DUE), 2017, : 240 - 247