A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism

被引:11
|
作者
Yan, Xiuying [1 ]
Ji, Xingxing [1 ]
Meng, Qinglong [2 ]
Sun, Hang [3 ]
Lei, Yu [3 ]
机构
[1] Xian Univ Architecture & Technol, Sch Bldg Serv Sci & Engn, Xian 710055, Peoples R China
[2] Changan Univ, Sch Civil Engn, Xian 710061, Peoples R China
[3] China Construct Third Engn Bur Installat Engn Co L, Wuhan 430040, Peoples R China
基金
中国国家自然科学基金;
关键词
Cooling load forecasting; Large commercial building; Bidirectional long short-term memory; Improved whale optimization algorithm; Prediction accuracy; REGRESSION;
D O I
10.1016/j.energy.2024.130388
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management. Therefore, a hybrid prediction model of an improved bidirectional long short-term memory (BiLSTM) network based on principal component analysis network (PCANet) and attention mechanism (CNN-IBiLSTM-Attention) is proposed to predict the cooling load of large commercial buildings. First of all, the PCANet algorithm is used to analyze the sensitivity of the influencing factors. Then, the hybrid strategy improved whale optimization algorithm (HSIWOA) is used to optimize the hyperparameter of BiLSTM. At last, the performance of the proposed algorithm is verified by using the actual data of two commercial buildings in Xi'an. The results show that using the PCANet algorithm for sensitivity analysis avoids feature redundancy. HSIWOA is suitable for hyperparameter optimization of BiLSTM. Compared with the other three prediction models, CNN-IBiLSTM-Attention reduced the mean absolute percentage error (MAPE) of Building 1 and 2 test sets by 31.55 %, 55.59 %, and 60.58 % and 56.49 %, 60.3 %, and 67.37 %, respectively. The proposed prediction model has superior hyperparameter optimization ability, better model complexity, and stronger generalization ability. Therefore, the proposed prediction model becomes a reliable tool for predicting the cooling load of large commercial buildings.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Electricity Load and Price Forecasting Using a Hybrid Method Based Bidirectional Long Short-Term Memory with Attention Mechanism Model
    Gomez, William
    Wang, Fu-Kwun
    Amogne, Zemenu Endalamaw
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [2] District heating load prediction algorithm based on bidirectional long short-term memory network model
    Cui, Mianshan
    ENERGY, 2022, 254
  • [3] A lifetime prediction model based on two-path convolution with attention mechanism and bidirectional long short-term memory network
    Sun, Xianbin
    Dong, Meiqi
    Bai, Lin
    Sun, Yanling
    Chen, Ao
    Nie, Yanyan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [4] Water Flow Prediction Based on Improved Spatiotemporal Attention Mechanism of Long Short-Term Memory Network
    Hu, Wenwen
    Yu, Yongchuan
    Yan, Jianzhuo
    Zhao, Zhe
    Sun, Wenxue
    Shen, Xumeng
    WATER, 2024, 16 (11)
  • [5] A Combined Model of Convolutional Neural Network and Bidirectional Long Short-Term Memory with Attention Mechanism for Load Harmonics Forecasting
    Kuyumani, Excellence M.
    Hasan, Ali N.
    Shongwe, Thokozani C.
    ENERGIES, 2024, 17 (11)
  • [6] Intrusion Detection Based on Bidirectional Long Short-Term Memory with Attention Mechanism
    Yang, Yongjie
    Tu, Shanshan
    Ali, Raja Hashim
    Alasmary, Hisham
    Waqas, Muhammad
    Amjad, Muhammad Nouman
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 801 - 815
  • [7] Forecasting carbon price with attention mechanism and bidirectional long short-term memory network
    Qin, Chaoyong
    Qin, Dongling
    Jiang, Qiuxian
    Zhu, Bangzhu
    ENERGY, 2024, 299
  • [8] Sentiment classification using attention mechanism and bidirectional long short-term memory network
    Wu, Peng
    Li, Xiaotong
    Ling, Chen
    Ding, Shengchun
    Shen, Si
    APPLIED SOFT COMPUTING, 2021, 112
  • [9] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [10] Attention-based long short-term memory network temperature prediction model
    Kun, Xiao
    Shan, Tian
    Yi, Tan
    Chao, Chen
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 278 - 281