Multiplicative Dependent Pairs in the Sequence of Padovan Numbers

被引:0
|
作者
Behera, Mitashree [1 ]
Ray, Prasanta Kumar [1 ]
机构
[1] Sambalpur Univ, Dept Math, Burla, India
关键词
Padovan sequence; linear forms in logarithm; reduction methods; multiplicative dependent;
D O I
10.1515/ms-2023-0083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Padovan sequence {P-n}(n >= 0) is a ternary recurrent sequence defined recursively by the relation P-n = Pn-2 + Pn-3 with initials P-0 = P-1 = P-2 = 1. In this note, we search all pairs of multiplicative dependent vectors whose coordinates are Padovan numbers. For this purpose, we apply Matveev's theorem to find the lower bounds of the non-zero linear forms in logarithms. Techniques involving the LLL algorithm and the theory of continued fraction are utilized to reduce the bounds.
引用
收藏
页码:1135 / 1144
页数:10
相关论文
共 50 条
  • [1] Multiplicative dependence between Padovan and Perrin numbers
    Behera, Mitashree
    Ray, Prasanta Kumar
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (02):
  • [2] Multiplicative dependence between Padovan and Perrin numbers
    Mitashree Behera
    Prasanta Kumar Ray
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [3] On difference sequence spaces of fractional-order involving Padovan numbers
    Yaying, Taja
    Hazarika, Bipan
    Mohiuddine, Syed Abdul
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (06)
  • [4] Hessenberg Matrices and Padovan Numbers
    Yasar, Meral
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [5] Combinatorial Interpretation of Numbers in the Generalized Padovan Sequence and Some of Its Extensions
    Machado Vieira, Renata Passos
    Vieira Alves, Francisco Regis
    Machado Cruz Catarino, Paula Maria
    AXIOMS, 2022, 11 (11)
  • [6] Padovan numbers that are concatenations of a Padovan number and a Perrin number
    Duman, Merve Guney
    PERIODICA MATHEMATICA HUNGARICA, 2024, 89 (01) : 139 - 154
  • [7] Fibonacci numbers as sums of two Padovan numbers
    Ana Cecilia García Lomelí
    Santos Hernández Hernández
    Florian Luca
    Afrika Matematika, 2022, 33
  • [8] On concatenations of Padovan and Perrin numbers
    Bravo, Eric Fernando
    MATHEMATICAL COMMUNICATIONS, 2023, 28 (01) : 105 - 119
  • [9] Fermat Padovan And Perrin Numbers
    Rihane, Salah Eddine
    Adegbindin, Chefiath Awero
    Togbe, Alain
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (06)
  • [10] On the Padovan p-numbers
    Deveci, Omur
    Karaduman, Erdal
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (04): : 579 - 592