2D characterisation and evaluation of multi-material structures towards 3D hybrid printing

被引:3
|
作者
Cicek, Umur I. [1 ,2 ]
Southee, Darren J. [1 ]
Johnson, Andrew A. [1 ]
机构
[1] Loughborough Univ, Sch Design & Creat Arts, Loughborough, England
[2] Loughborough Univ, Design Sch, Loughborough LE11 3TU, England
关键词
Material extrusion; multi-material manufacturing; hybrid manufacturing; printed electronics; conductive silver films; ELECTRICAL PERFORMANCE; ELECTRONIC COMPONENTS; FABRICATION; STEREOLITHOGRAPHY; RELIABILITY; FILAMENT;
D O I
10.1080/17452759.2023.2181193
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-material manufacturing through the hybridisation of printed electronics and additive manufacturing has gained great interest recently. However, such hybridisation attempts are not trivial due to the need for functional material development and compatible process identification, as well as further performance understanding, comprehensive characterisation and long-term reliability evaluation of multi-material parts. While some multi-material structures from functional materials such as silver inks have been demonstrated via the integration of direct writing systems into stereolithography or material extrusion platforms, the performance assessment and characterisation of parts manufactured using such integrated systems is still required. Therefore, this research presents a comprehensive assessment of multi-material structures manufactured using syringe deposition and material extrusion platforms. Test specimens were subjected to various characterisation activities such as thickness measurement, resistance measurement, roughness tests, wettability measurement, adhesion tests, and morphological analysis. Results and statistical analyses suggested that the dry thickness and conductivity of deposited films were dependent on the substrate material. Adhesion between the conductive film and substrate was affected by both substrate material and ink deposition angle. Also, the interaction of conductive films with polycarbonate substrate was found to be noticeably better among all substrates due to low resistivity and enhanced adhesion at low thicknesses.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Ceramics and multi-material 3D printing
    Keramik und Multi-Material 3D-Druck
    Kollenberg, W. (w.kollenberg@wzr.cc), 1600, DVS Verlag (66):
  • [2] Simultaneous multi-material embedded printing for 3D heterogeneous structures
    Ziqi Gao
    Jun Yin
    Peng Liu
    Qi Li
    Runan Zhang
    Huayong Yang
    Hongzhao Zhou
    InternationalJournalofExtremeManufacturing, 2023, 5 (03) : 491 - 504
  • [3] A review on polyjet 3D printing of polymers and multi-material structures
    Patpatiya, Parth
    Chaudhary, Kailash
    Shastri, Anshuman
    Sharma, Shailly
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (14) : 7899 - 7926
  • [4] Simultaneous multi-material embedded printing for 3D heterogeneous structures
    Gao, Ziqi
    Yin, Jun
    Liu, Peng
    Li, Qi
    Zhang, Runan
    Yang, Huayong
    Zhou, Hongzhao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (03)
  • [5] Multi-Material 3D and 4D Printing: A Survey
    Rafiee, Mohammad
    Farahani, Rouhollah D.
    Therriault, Daniel
    ADVANCED SCIENCE, 2020, 7 (12)
  • [6] Multi-Material 3D Printing of Biobased Epoxy Resins
    Bergoglio, Matteo
    Rossegger, Elisabeth
    Schloegl, Sandra
    Griesser, Thomas
    Waly, Christoph
    Arbeiter, Florian
    Sangermano, Marco
    POLYMERS, 2024, 16 (11)
  • [7] Development of a Multi-Material Stereolithography 3D Printing Device
    Khatri, Bilal
    Frey, Marco
    Raouf-Fahmy, Ahmed
    Scharla, Marc-Vincent
    Hanemann, Thomas
    MICROMACHINES, 2020, 11 (05)
  • [8] Multi-material 3D printing produces expandable microlattices
    Hortense Le Ferrand
    MRS Bulletin, 2018, 43 : 649 - 649
  • [9] Multi-material 3D printing produces expandable microlattices
    Le Ferrand, Hortense
    MRS BULLETIN, 2018, 43 (09) : 649 - 649
  • [10] Multi-material 3D printing guided by machine vision
    Yong Lin Kong
    Nature, 2023, 623 : 488 - 490