Automated Lyapunov Analysis of Primal-Dual Optimization Algorithms: An Interpolation Approach

被引:0
|
作者
Van Scoy, Bryan [1 ]
Simpson-Porco, John W. [2 ]
Lessard, Laurent [3 ]
机构
[1] Miami Univ, Dept Elect & Comp Engn, Oxford, OH 45056 USA
[2] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[3] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
ECONOMIC-DISPATCH; STABILITY; DYNAMICS; GRIDS;
D O I
10.1109/CDC49753.2023.10384285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Primal-dual algorithms are frequently used for iteratively solving large-scale convex optimization problems. The analysis of such algorithms is usually done on a case-by-case basis, and the resulting guaranteed rates of convergence can be conservative. Here we consider a class of first-order algorithms for linearly constrained convex optimization problems, and provide a linear matrix inequality (LMI) analysis framework for certifying worst-case exponential convergence rates. Our approach builds on recent results for interpolation of convex functions and linear operators, and our LMI directly constructs a Lyapunov function certifying the guaranteed convergence rate. By comparing to rates established in the literature, we show that our approach can certify significantly faster convergence for this family of algorithms.
引用
收藏
页码:1306 / 1311
页数:6
相关论文
共 50 条
  • [1] Primal-dual damping algorithms for optimization
    Zuo, Xinzhe
    Osher, Stanley
    Li, Wuchen
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2024, 9 (02) : 467 - 504
  • [2] PRIMAL-DUAL ALGORITHMS FOR OPTIMIZATION WITH STOCHASTIC DOMINANCE
    Haskell, William B.
    Shanthikumar, J. George
    Shen, Z. Max
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) : 34 - 66
  • [3] ON PRIMAL-DUAL ALGORITHMS
    BELL, EJ
    JENNINGS, C
    COMMUNICATIONS OF THE ACM, 1966, 9 (09) : 653 - &
  • [4] A CLASS OF RANDOMIZED PRIMAL-DUAL ALGORITHMS FOR DISTRIBUTED OPTIMIZATION
    Pesquet, Jean-Christophe
    Repetti, Audrey
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (12) : 2453 - 2490
  • [5] A primal-dual approach in truss topology optimization
    Beckers, M
    Fleury, C
    COMPUTERS & STRUCTURES, 1997, 64 (1-4) : 77 - 88
  • [6] Primal-dual approach in truss topology optimization
    Beckers, M.
    Fleury, C.
    Computers and Structures, 1997, 64 (1-4): : 77 - 88
  • [7] Primal-dual optimization algorithms over Riemannian manifolds: an iteration complexity analysis
    Zhang, Junyu
    Ma, Shiqian
    Zhang, Shuzhong
    MATHEMATICAL PROGRAMMING, 2020, 184 (1-2) : 445 - 490
  • [8] Primal-dual optimization algorithms over Riemannian manifolds: an iteration complexity analysis
    Junyu Zhang
    Shiqian Ma
    Shuzhong Zhang
    Mathematical Programming, 2020, 184 : 445 - 490
  • [9] Quantized Primal-Dual Algorithms for Network Optimization With Linear Convergence
    Chen, Ziqin
    Liang, Shu
    Li, Li
    Cheng, Shuming
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (01) : 471 - 478
  • [10] Resilient Primal-Dual Optimization Algorithms for Distributed Resource Allocation
    Turan, Berkay
    Uribe, Cesar A.
    Wai, Hoi-To
    Alizadeh, Mahnoosh
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (01): : 282 - 294