Scattering and Minimization Theory for Cubic Inhomogeneous Nls with Inverse Square Potential

被引:0
|
作者
Hajaiej, Hichem [1 ]
Luo, Tingjian [2 ]
Wang, Ying [3 ]
机构
[1] Calif State Univ Los Angeles, Los Angeles, CA USA
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Inhomogeneous Schrodinger equation; Inverse square potential; Scattering; Virial/Morawetz estimate; Normalized solutions; Ground state solutions; NONLINEAR SCHRODINGER-EQUATION; GROUND-STATE; PROOF; SPACE; DECAY;
D O I
10.1007/s10884-023-10301-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the scattering theory for the cubic inhomogeneous Schrodinger equations with inverse square potential iut + u - a |x|2 u =.|x|-b|u|2u with a > - 1 4 and 0 < b < 1 in dimension three. In the defocusing case (i.e.. = 1), we establish the global well-posedness and scattering for any initial data in the energy space H1 a (R3). While for the focusing case(i.e.. = -1), we obtain the scattering for the initial data below the threshold of the ground state, by making use of the virial/Morawetz argument as in Dodson and Murphy (Proc Am Math Soc 145:4859-4867, 2017) and Campos and Cardoso (Proc Am Math Soc 150:2007-2021, 2022) that avoids the use of interaction Morawetz estimate. We also address the existence and the non-existence of normalized solutions of the above Schrodinger equation in dimension N for the focusing and defocusing cases.
引用
收藏
页码:3457 / 3480
页数:24
相关论文
共 50 条