Charge compensation in a layered van der Waals NiPS3 host through various cationic intercalations

被引:1
|
作者
Pazek, Sebastian [1 ]
Efimenko, Anna [2 ]
Felix, Roberto [2 ]
Roslova, Maria [1 ]
Querebillo, Christine Joy [1 ]
Gorbunov, Mikhail V. [1 ]
Ovchinnikov, Alexander [3 ]
Koitzsch, Andreas [1 ]
Escudero, Carlos [4 ]
Shemerliuk, Yuliia [1 ]
Aswartham, Saicharan [1 ]
Buechner, Bernd [1 ]
Omar, Ahmad [1 ]
Mikhailova, Daria [1 ]
机构
[1] Leibniz Inst Solid State & Mat Res IFW Dresden eV, Helmholtzstr 20, D-01069 Dresden, Germany
[2] Helmholtz Zentrum Berlin Mat & Energie GmbH HZB, Dept Interface Design, Albert Einstein Str 15, D-12489 Berlin, Germany
[3] Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany
[4] ALBA Synchrotron, Carrer Llum 2-26, Barcelona 08290, Spain
关键词
X-RAY-ABSORPTION; METAL PHOSPHORUS TRICHALCOGENIDES; LITHIUM INTERCALATION; IONIC LIQUIDS; INFRARED-SPECTRA; RAMAN; THIOPHOSPHATE; DIFFRACTION; 1,10-PHENANTHROLINE; ELECTROLYTES;
D O I
10.1039/d3ta06196e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The layered structure of van der Waals compounds enables facile insertion of guest species between layers, resulting in material multifunctionality through easily modifying its physical properties. Isostructural MPS3 compounds with 3d transition metal cations such as Mn, Fe, Co and Ni can serve as hosts for relatively small alkali metals as well as larger organic molecules. NiPS3 is the most exotic representative among them, because despite 30 years of intense research, its electronic structure still evokes numerous questions, not to mention the electronic structure of intercalated NiPS3. There are two possibilities for electron transfer in semiconducting NiPS3 upon insertion of electron-donating species, either to a discrete Ni atomic level, or to a molecular level of the (P2S6)(4-) unit. We performed a systematic structural and spectroscopic study of NiPS3 upon electrochemical intercalation of Li, Na and 1-ethyl-3-methylimidazolium (EMIM) cations. Up to 0.5 Li or 0.5 Na per NiPS3 formula unit can be inserted into free octahedral spaces in the interlayers without visible changes in the diffraction pattern of the host. In contrast, more than 1 EMIM per NiPS3 unit can be intercalated between host layers leading to a significant interlayer distance expansion from 6.33 angstrom to 11.3 angstrom. The charge compensation was found to be different for the three intercalants: upon Li insertion, the electron density increases on the (P2S6)(4-) unit and Ni remains redox-inactive, while intercalation of Na leads to reduction of Ni. In contrast, uptake of larger EMIM cations does not result in any changes in Ni, S and P K-edge near edge XANES spectra of NiPS3 and results in only very little change in their extended X-ray absorption fine structure spectra. It is likely that there is an electrochemical reduction of EMIM cations to heterocyclic carbenes with their possible dimerization. The impact on magnetization of Li and EMIM intercalation was also studied.
引用
收藏
页码:3523 / 3541
页数:19
相关论文
共 50 条
  • [1] Charge-Spin Correlation in van der Waals Antiferromagnet NiPS3
    Kim, So Yeun
    Kim, Tae Yun
    Sandilands, Luke J.
    Sinn, Soobin
    Lee, Min-Cheol
    Son, Jaeseok
    Lee, Sungmin
    Choi, Ki-Young
    Kim, Wondong
    Park, Byeong-Gyu
    Jeon, C.
    Kim, Hyeong-Do
    Park, Cheol-Hwan
    Park, Je-Geun
    Moon, S. J.
    Noh, T. W.
    PHYSICAL REVIEW LETTERS, 2018, 120 (13)
  • [2] Quantum fluctuations in the van der Waals material NiPS3
    Mellado, Paula
    Sturla, Mauricio
    PHYSICAL REVIEW B, 2024, 110 (13)
  • [3] Charge-Transfer-Mediated Exciton Dynamics in Van der Waals Antiferromagnet NiPS3
    Li, Yuanhe
    Liang, Gaoming
    Kong, Chongtao
    Sun, Baoquan
    Zhang, Xinhui
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
  • [4] Origin of the Magnetic Exciton in the van der Waals Antiferromagnet NiPS3
    Klaproth, T.
    Aswartham, S.
    Shemerliuk, Y.
    Selter, S.
    Janson, O.
    van den Brink, J.
    Buechner, B.
    Knupfer, M.
    Pazek, S.
    Mikhailova, D.
    Efimenko, A.
    Hayn, R.
    Savoyant, A.
    Gubanov, V.
    Koitzsch, A.
    PHYSICAL REVIEW LETTERS, 2023, 131 (25)
  • [5] Electric control of excitons in van der Waals antiferromagnet NiPS3
    Wang, Han
    Chen, Zhiyong
    Peng, Bo
    SCIENCE CHINA-MATERIALS, 2025, 68 (03) : 928 - 932
  • [6] Anisotropic optical band structure of van der Waals antiferromagnet NiPS3
    Kim, Jonghyeon
    Kim, Junghyun
    Kim, Beom Hyun
    Park, Je-Geun
    Kim, Jae Hoon
    PHYSICAL REVIEW B, 2024, 110 (18)
  • [7] Phase control of spin waves in the van der Waals antiferromagnet NiPS3
    Toyoda, Shingo
    Kruppe, Jonathon
    Yamakawa, Kohtaro
    Analytis, James
    Orenstein, Joseph
    PHYSICAL REVIEW B, 2024, 109 (06)
  • [8] Molecular intercalation in the van der Waals antiferromagnets FePS3 and NiPS3
    Li, Cong
    Hu, Ze
    Hou, Xiaofei
    Xu, Sheng
    Wu, Zhanlong
    Du, Kefan
    Li, Shuo
    Xu, Xiaoyu
    Chen, Ying
    Wang, Zeyu
    Mu, Tiancheng
    Xia, Tian-Long
    Guo, Yanfeng
    Normand, B.
    Yu, Weiqiang
    Cui, Yi
    PHYSICAL REVIEW B, 2024, 109 (18)
  • [9] 3D Heisenberg universality in the van der Waals antiferromagnet NiPS3
    Plumley, Rajan
    Mardanya, Sougata
    Peng, Cheng
    Nokelainen, Johannes
    Assefa, Tadesse
    Shen, Lingjia
    Burdet, Nicholas
    Porter, Zach
    Petsch, Alexander
    Israelski, Aidan
    Chen, Hongwei
    Lee, Jun-Sik
    Morley, Sophie
    Roy, Sujoy
    Fabbris, Gilberto
    Blackburn, Elizabeth
    Feiguin, Adrian
    Bansil, Arun
    Lee, Wei-Sheng
    Lindenberg, Aaron M.
    Chowdhury, Sugata
    Dunne, Mike
    Turner, Joshua J.
    NPJ QUANTUM MATERIALS, 2024, 9 (01)
  • [10] Elucidating the Role of Dimensionality on the Electronic Structure of the Van der Waals Antiferromagnet NiPS3
    Discala, Michael F.
    Staros, Daniel
    de la Torre, Alberto
    Lopez, Annette
    Wong, Deniz
    Schulz, Christian
    Barkowiak, Maciej
    Bisogni, Valentina
    Pelliciari, Jonathan
    Rubenstein, Brenda
    Plumb, Kemp W.
    ADVANCED PHYSICS RESEARCH, 2024, 3 (04):