A bijection theorem for Gorenstein projective t-tilting modules

被引:0
|
作者
Xie, Zongzhen [1 ,2 ]
Zhang, Xiaojin [3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Med Univ, Sch Biomed Engn & Informat, Dept Math & Comp Sci, Nanjing 211166, Peoples R China
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
关键词
t-tilting module; Gorenstein projective; Gorenstein injective; t (-1)-tilting module; CATEGORIES; MUTATION; ALGEBRAS;
D O I
10.1142/S0219498824501688
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notions of Gorenstein projective t-rigid modules, Gorenstein projective support t-tilting modules and Gorenstein torsion pairs and give a Gorenstein analog to Adachi-Iyama-Reiten's bijection theorem on support t-tilting modules. More precisely, for an algebra ?, we prove that there is a bijection between the set of Gorenstein projective support t-tilting modules and the set of functorially finite Gorenstein projective torsion classes. As an application, we introduce the notion of CM-t-tilting finite algebras and show that ? is CM-t-tilting finite if and only if ?(op) is CM-t-tilting finite. Moreover, we show that the Bongartz completion of a Gorenstein projective t-rigid module need not be a Gorenstein projective t-tilting module.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A CONSTRUCTION OF GORENSTEIN PROJECTIVE τ-TILTING MODULES
    Li, Zhi-Wei
    Zhang, Xiaojin
    COLLOQUIUM MATHEMATICUM, 2023, 171 (01) : 103 - 112
  • [2] Gorenstein Star Modules and Gorenstein Tilting Modules
    Zhang, Peiyu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (02) : 403 - 416
  • [3] Gorenstein Star Modules and Gorenstein Tilting Modules
    Peiyu Zhang
    Czechoslovak Mathematical Journal, 2021, 71 : 403 - 416
  • [4] Two-term relative cluster tilting subcategories, T-tilting modules and silting subcategories
    Zhou, Panyue
    Zhu, Bin
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (09)
  • [5] GORENSTEIN COTILTING AND TILTING MODULES
    Yan, Liang
    Li, Weiqing
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 591 - 603
  • [6] Tilting modules and Gorenstein rings
    Angeleri Hugel, Lidia
    Herbera, Dolors
    Trlifaj, Jan
    FORUM MATHEMATICUM, 2006, 18 (02) : 211 - 229
  • [7] Gorenstein-projective and semi-Gorenstein-projective modules
    Ringel, Claus Michael
    Zhang, Pu
    ALGEBRA & NUMBER THEORY, 2020, 14 (01) : 1 - 36
  • [8] -Gorenstein projective, -Gorenstein injective and -Gorenstein flat modules
    Zhang, Zhen
    Zhu, Xiaosheng
    Yan, Xiaoguang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (01) : 115 - 124
  • [9] Gorenstein orthogonal classes and Gorenstein weak tilting modules
    Mao, Lixin
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4172 - 4185
  • [10] A note on Gorenstein projective and Gorenstein flat modules
    Wang, Xinxin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (14)