Optimized Evolutionary Gravitational Neocognitron Neural Network for frequency reconfigurable antenna design

被引:2
|
作者
Shanthini, N. M. [1 ]
Bapu, B. R. Tapas [2 ]
机构
[1] Anna Univ, SA Engn Coll, Dept Elect & Commun Engn, Chennai, India
[2] SA Engn Coll, Fac Elect & Commun Engn, Chennai, India
关键词
Balancing composite motion optimization; Bandwidth; Evolutionary Gravitational Neocognitron; Neural Network; Frequency reconfigurable antenna; Reflection coefficient; RADIATION-PATTERN; POLARIZATION;
D O I
10.1016/j.aeue.2023.154867
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Frequency reconfigurable antenna design using Evolutionary Gravitational Neocognitron Neural Network optimized with Balancing Composite Motion Optimization (FRA-EGNN-BCMO) proposed here. Frequency reconfigurable antenna works at various frequency band at suitable resonance frequency based on choice over switching circuit. For designing the Frequency reconfigurable antenna, the maximum and minimum are needed to optimize. The antenna impedance and magnitude are depending on and of antenna. Here, and are considered as the impedance matching parameters. Hence, Evolutionary Gravitational Neocognitron Neural Network (EGNN) used for optimizing and impedance matching parameters. In general, EGNN do not show any adoption of optimizing systems to compute optimum parameter to make sure exact design. Therefore, in this work, the proposed Balancing Composite Motion Optimization (BCMO) used to optimize weight parameter of EGNN. The proposed FRA-EGNN-BCMO method performance system is analyzed under several metrics like, Bandwidth (MHz), Reflection Coefficient (in dB), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), forecast accuracy. Simulation results of proposed FRA-EGNN-BCMO design provide better predicted accuracy 34.79%, 24.88% and 33.09% compared with existing methods, like FRAD-BPNN, FRAD-PSADEA and FRAD-ITLBO respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Plant Leaf Disease Detection Using an Optimized Evolutionary Gravitational Neocognitron Neural Network
    Goyal, Praveen
    Verma, Dinesh Kumar
    Kumar, Shishir
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2024, 47 (04): : 347 - 354
  • [2] Evolutionary gravitational neocognitron neural network optimized with marine predators optimization algorithm for MRI brain tumor classification
    Lakshmi, A.
    Alagarsamy, Manjunathan
    Pandian, A. Anbarasa
    Mani, Dinesh Paramathi
    ELECTROMAGNETIC BIOLOGY AND MEDICINE, 2024, 43 (1-2) : 1 - 18
  • [3] Gynecological Healthcare: Unveiling Pelvic Masses Classification through Evolutionary Gravitational Neocognitron Neural Network Optimized with Nomadic People Optimizer
    Deeparani, M.
    Kalamani, M.
    DIAGNOSTICS, 2023, 13 (19)
  • [4] Design of frequency reconfigurable planar antenna using artificial neural network
    Kaur, Navneet
    Sivia, Jagtar Singh
    Rajni
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2022, 14 (09) : 1107 - 1118
  • [5] Retraction Note: Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network
    P. Gomathi
    S. Baskar
    P. Mohamed Shakeel
    V. R. Sarma Dhulipala
    Multimedia Tools and Applications, 2023, 82 : 15925 - 15925
  • [6] RETRACTED ARTICLE: Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network
    P. Gomathi
    S. Baskar
    P. Mohamed Shakeel
    V. R. Sarma Dhulipala
    Multimedia Tools and Applications, 2020, 79 : 10609 - 10628
  • [7] An Evolutionary Gravitational Neocognitron Neural Network for Earthquake Parameters Observation in IoT System-Based Earthquake Early Warning
    Manikannan, K.
    Bansod, Premendra Janardan
    Murugan, Mageswari
    Subbaram, Sivaramakrishnan
    JOURNAL OF EARTHQUAKE AND TSUNAMI, 2024, 18 (05)
  • [8] RF MEMS for Reconfigurable Antenna Using Gravitational Search Optimization and Artificial Neural Network
    Balarajuswamy, T. A.
    Nakkeeran, R.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2018, 27 (08)
  • [9] Evolutionary gravitational neocognitron neural network based block chain technology for a secured dynamic optimal routing in wireless sensor networks
    Satheeskumar, R.
    Prakash, B.
    Velliangiri, S.
    Shajin, Francis H
    Journal of Experimental and Theoretical Artificial Intelligence, 2024, 36 (03): : 435 - 451
  • [10] Evolutionary gravitational neocognitron neural network based block chain technology for a secured dynamic optimal routing in wireless sensor networks
    Satheeskumar, R.
    Prakash, B.
    Velliangiri, S.
    Shajin, Francis H.
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024, 36 (03) : 435 - 451