Combination of human platelet lysate and 3D gelatin scaffolds to enhance osteogenic differentiation of human amniotic fluid derived mesenchymal stem cells

被引:1
|
作者
Yaja, Kantirat [1 ]
Aungsuchawan, Sirinda [1 ]
Narakornsak, Suteera [1 ]
Pothacharoen, Peraphan [2 ]
Pantan, Rungusa [1 ]
Tancharoen, Waleephan [1 ]
机构
[1] Chiang Mai Univ, Fac Med, Dept Anat, Chiang Mai, Thailand
[2] Chiang Mai Univ, Fac Med, Thailand Excellence Ctr Tissue Engn & Stem Cells, Dept Biochem, Chiang Mai, Thailand
关键词
Human amniotic fluid mesenchymal stem cells; Osteogenic differentiation; Osteoblast-like cells; Human platelet lysate; Scaffold; Tissue engineering; FETAL BOVINE SERUM; GROWTH-FACTORS; STROMAL CELLS; BONE-MARROW; DENTAL-PULP; RICH PLASMA; CORD BLOOD; IN-VITRO; CULTURE; EXPRESSION;
D O I
10.1016/j.heliyon.2023.e18599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone disorders are major health issues requiring specialized care; however, the traditional bone grafting method had several limitations. Thus, bone tissue engineering has become a potential alternative. In therapeutic treatments, using fetal bovine serum (FBS) as a culture supplement may result in the risk of contamination and host immunological response; therefore, human platelet lysate (hPL) has been considered a viable alternative source. This study attempted to compare the effectiveness and safety of different culture supplements, either FBS or hPL, on the osteoblastic differentiation potential of mesenchymal stem cells derived from human amniotic fluid (hAF-MSCs) under a three-dimensional gelatin scaffold. The results indicate that hAF-MSCs have the potential to be used in clinical applications as they meet the criteria for mesenchymal stem cells based on their morphology, the expression of a particular surface antigen, their pro-liferation ability, and their capacity for multipotent differentiation. After evaluation by MTT and Alamar blue proliferation assay, 10% of hPL was selected. The osteogenic differentiation of hAF-MSCs under three-dimensional gelatin scaffold using osteogenic-induced media supplemented with hPL was achievable and markedly stimulated osteoblast differentiation. Moreover, the ex-pressions of osteoblastogenic related genes, including OCN, ALP, and COL1A1, exhibited the highest degree of expression under hPL-supplemented circumstances when compared with the control and the FBS-supplemented group. The induced cells under hPL-supplemented conditions also presented the highest ALP activity level and the greatest degree of calcium accumulation. These outcomes would indicate that hPL is a suitable substitute for animal derived serum. Importantly, osteogenic differentiation of human amniotic fluid derived mesenchymal stem cells using hPL-supplemented media and three-dimensional scaffolds may open the door to developing an alternative construct for repairing bone defects.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation
    Re, Federica
    Sartore, Luciana
    Moulisova, Vladimira
    Cantini, Marco
    Almici, Camillo
    Bianchetti, Andrea
    Chinello, Clizia
    Dey, Kamol
    Agnelli, Silvia
    Manferdini, Cristina
    Bernardi, Simona
    Lopomo, Nicola F.
    Sardini, Emilio
    Borsani, Elisa
    Rodella, Luigi F.
    Savoldi, Fabio
    Paganelli, Corrado
    Guizzi, Pierangelo
    Lisignoli, Gina
    Magni, Fulvio
    Salmeron-Sanchez, Manuel
    Russo, Domenico
    JOURNAL OF TISSUE ENGINEERING, 2019, 10
  • [2] PLATELET GROWTH FACTORS ENHANCE OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS ON CALCIUM PHOSPHATE SCAFFOLDS
    Amani, M.
    Amirizadeh, N.
    Soleimani, M.
    Malakan, H.
    Mohamadi, M.
    Masroori, N.
    VOX SANGUINIS, 2009, 97 : 168 - 169
  • [3] Human platelet lysate as an alternative to fetal bovine serum for culture and endothelial differentiation of human amniotic fluid mesenchymal stem cells
    Tancharoen, Waleephan
    Aungsuchawan, Sirinda
    Pothacharoen, Peraphan
    Bumroongkit, Kanokkan
    Puaninta, Chaniporn
    Pangjaidee, Nathaporn
    Narakornsak, Suteera
    Markmee, Runchana
    Laowanitwattana, Tanongsak
    Thaojamnong, Chawapon
    MOLECULAR MEDICINE REPORTS, 2019, 19 (06) : 5123 - 5132
  • [4] Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells
    Nair, Manitha
    Nancy, D.
    Krishnan, Amit G.
    Anjusree, G. S.
    Vadukumpully, Sajini
    Nair, Shantikumar V.
    NANOTECHNOLOGY, 2015, 26 (16)
  • [5] Simvastatin induces osteogenic differentiation in human amniotic fluid mesenchymal stem cells (AFMSC)
    de Lara Janz, Felipe
    Favero, Giovani Marino
    Bohatch, Milton Sergio, Jr.
    Aguiar Debes, Adrianade
    Bydlowski, Sergio Paulo
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2014, 28 (02) : 211 - 216
  • [6] Osteogenic Differentiation of Human Amniotic Fluid Mesenchymal Stem Cells Is Determined by Epigenetic Changes
    Glemzaite, Monika
    Navakauskiene, Ruta
    STEM CELLS INTERNATIONAL, 2016, 2016
  • [7] Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate
    Chevallier, Nathalie
    Anagnostou, Fani
    Zilber, Sebastien
    Bodivit, Gwellaouen
    Maurin, Sophie
    Barrault, Aurelie
    Bierling, Philippe
    Hernigou, Philippe
    Layrolle, Pierre
    Rouard, Helene
    BIOMATERIALS, 2010, 31 (02) : 270 - 278
  • [8] Platelet lysate for expansion or osteogenic differentiation of bone marrow mesenchymal stem cells for 3D tissue constructs
    Anerillas, Luis Oliveros
    Wiberg, Mikael
    Kingham, Paul J.
    Kelk, Peyman
    REGENERATIVE THERAPY, 2023, 24 : 298 - 310
  • [9] Osteogenic Differentiation of Human Mesenchymal Stem cells in a 3D Woven Scaffold
    Persson, Maria
    Lehenkari, Petri P.
    Berglin, Lena
    Turunen, Sanna
    Finnila, Mikko A. J.
    Risteli, Juha
    Skrifvars, Mikael
    Tuukkanen, Juha
    SCIENTIFIC REPORTS, 2018, 8
  • [10] Osteogenic Differentiation of Human Mesenchymal Stem cells in a 3D Woven Scaffold
    Maria Persson
    Petri P. Lehenkari
    Lena Berglin
    Sanna Turunen
    Mikko A. J. Finnilä
    Juha Risteli
    Mikael Skrifvars
    Juha Tuukkanen
    Scientific Reports, 8