Geometry and bone mineral density determinants of femoral neck strength changes following exercise

被引:2
|
作者
O'Rourke, Dermot [1 ,2 ]
Beck, Belinda R. [3 ,4 ,5 ]
Harding, Amy T. [3 ,4 ]
Watson, Steven L. [6 ]
Pivonka, Peter [2 ]
Martelli, Saulo [1 ,2 ]
机构
[1] Flinders Univ S Australia, Coll Sci & Engn, Med Device Res Inst, Adelaide, SA, Australia
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld, Australia
[3] Menzies Hlth Inst Queensland, Gold Coast, Australia
[4] Griffith Univ, Sch Hlth Sci & Social Work, Gold Coast, Australia
[5] Bone Clin, Brisbane, Qld, Australia
[6] Gold Coast Univ Hosp, Gold Coast, Australia
基金
澳大利亚研究理事会;
关键词
Exercise; Osteoporosis; DXA; Bone adaptation; Fracture prevention; FINITE-ELEMENT MODELS; PROXIMAL FEMUR; HIP FRACTURE; PREDICTION; FAILURE; 3D; ACCURACY; IMPROVES; CORTEX; FALL;
D O I
10.1007/s10237-022-01642-w
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Physical exercise induces spatially heterogeneous adaptation in bone. However, it remains unclear where the changes in BMD and geometry have the greatest impact on femoral neck strength. The aim of this study was to determine the principal BMD-and-geometry changes induced by exercise that have the greatest effect on femoral neck strength. Pre- and post-exercise 3D-DXA images of the proximal femur were collected of male participants from the LIFTMOR-M exercise intervention trial. Meshes with element-by-element correspondence were generated by morphing a template mesh to each bone to calculate changes in BMD and geometry. Finite element (FE) models predicted femoral neck strength changes under single-leg stance and sideways fall load. Partial least squares regression (PLSR) models were developed with BMD-only, geometry-only, and BMD-and-geometry changes to determine the principal modes that explained the greatest variation in neck strength changes. The PLSR models explained over 90% of the strength variation with 3 PLS components using BMD-only (R-2 > 0.92, RMSE < 0.06 N) and 8 PLS components with geometry-only (R-2 > 0.93, RMSE < 0.06 N). Changes in the superior neck and distal cortex were most important during single-leg stance while the superior neck, medial head, and lateral trochanter were most important during a sideways fall. Local changes in femoral neck and head geometry could differentiate the exercise groups from the control group. Exercise interventions may target BMD changes in the superior neck, inferior neck, and greater trochanter for improved femoral neck strength in single-leg stance and sideways fall.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 50 条
  • [1] Geometry and bone mineral density determinants of femoral neck strength changes following exercise
    Dermot O’Rourke
    Belinda R. Beck
    Amy T. Harding
    Steven L. Watson
    Peter Pivonka
    Saulo Martelli
    Biomechanics and Modeling in Mechanobiology, 2023, 22 : 207 - 216
  • [2] Assessment of femoral neck strength and bone mineral density changes following exercise using 3D-DXA images
    O'Rourke, Dermot
    Beck, Belinda R.
    Harding, Amy T.
    Watson, Steven L.
    Pivonka, Peter
    Martelli, Saulo
    JOURNAL OF BIOMECHANICS, 2021, 119
  • [3] Age-related changes in volumetric bone mineral density and femoral neck geometry
    Riancho, JA
    Valero, C
    Hernandez, JL
    Zarrabeitia, AL
    Zarrabeitia, MT
    Peña, N
    BONE, 2005, 36 : S325 - S326
  • [4] Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women
    Srinivasan, B.
    Kopperdahl, D. L.
    Amin, S.
    Atkinson, E. J.
    Camp, J.
    Robb, R. A.
    Riggs, B. L.
    Orwoll, E. S.
    Melton, L. J., III
    Keaveny, T. M.
    Khosla, S.
    OSTEOPOROSIS INTERNATIONAL, 2012, 23 (01) : 155 - 162
  • [5] Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women
    B. Srinivasan
    D. L. Kopperdahl
    S. Amin
    E. J. Atkinson
    J. Camp
    R. A. Robb
    B. L. Riggs
    E. S. Orwoll
    L. J. Melton
    T. M. Keaveny
    S. Khosla
    Osteoporosis International, 2012, 23 : 155 - 162
  • [6] Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density
    Pisharody, S.
    Phillips, R.
    Langton, C. M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2008, 222 (H3) : 367 - 375
  • [7] Assessment of the strength of proximal femur in vitro: Relationship to femoral bone mineral density and femoral geometry
    Cheng, XG
    Lowet, G
    Boonen, S
    Nicholson, PHF
    Brys, P
    Nijs, J
    Dequeker, J
    BONE, 1997, 20 (03) : 213 - 218
  • [8] Impaired bone quality in the superolateral femoral neck occurs independent of hip geometry and bone mineral density
    Kroge, Simon Von
    Sturznickel, Julian
    Bechler, Ulrich
    Stockhausen, Kilian Elia
    Eissele, Julian
    Hubert, Jan
    Amling, Michael
    Beil, Frank Timo
    Busse, Bjorn
    Rolvien, Tim
    ACTA BIOMATERIALIA, 2022, 141 : 233 - 243
  • [9] Hip bone mineral density (BMD) - strength associations vary with femoral neck width
    Jepsen, Karl
    Bigelow, Erin
    Casden, Michael
    Goulet, Robert
    Kennedy, Kathryn
    Hertz, Samantha
    Kadur, Chandan
    Nolan, Bonnie
    Richards-McCullough, Kerry
    Merillat, Steffanie
    Karvonen-Gutierrez, Carrie
    Bredbenner, Todd
    JOURNAL OF BONE AND MINERAL RESEARCH, 2023, 38 : 329 - 329
  • [10] Whole Body Vibration Increases Cartilage Thickness and Cancellous Bone Strength, But Not Femoral Neck Strength or Bone Mineral Density
    Runge, W.
    Dahners, L.
    Marcellin-Little, D.
    Harryson, O.
    Ruppert, D.
    Weinhold, P.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2015, 63 : S233 - S234