Predicting academic success: machine learning analysis of student, parental, and school efforts

被引:2
|
作者
Jin, Xin [1 ]
机构
[1] Free Univ Berlin, Fachbereich Erziehungswissenschaft & Psychol, Fabeckstr 37 & 69,Habelschwerdter Allee 45, D-14195 Berlin, Germany
关键词
Academic achievement; Machine learning; School effort; Family involvement; Gender disparities; SOCIAL-CLASS; ACHIEVEMENT; INVOLVEMENT; PERFORMANCE; INEQUALITY; MODELS; OPPORTUNITY; EDUCATION; TEACHERS; CHILDREN;
D O I
10.1007/s12564-023-09915-4
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Understanding what predicts students' educational outcomes is crucial to promoting quality education and implementing effective policies. This study proposes that the efforts of students, parents, and schools are interrelated and collectively contribute to determining academic achievements. Using data from the China Education Panel Survey conducted between 2013 and 2015, this study employs four widely used machine learning techniques, namely, Lasso, Random Forest, AdaBoost, and Support Vector Regression, which are effective for prediction tasks-to explore the predictive power of individual predictors and variable categories. The effort exerted by each group has varying impacts on academic exam results, with parents' demanding requirements being the most significant individual predictor of academic performance; the category of school effort has a greater impact than parental and student effort when controlling for various social-origin-based characteristics; and significant gender differences among junior high students in China, with school effort exhibiting a greater impact on academic achievement for girls than for boys, and parental effort showing a greater impact for boys than for girls. This study advances the understanding of the role of effort as an independent factor in the learning process, theoretically and empirically. The findings have substantial implications for education policies aimed at enhancing school effort, emphasizing the need for gender-specific interventions to improve academic performance for all students.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Machine Learning Based Predicting Student Academic Success
    Al Mayahi, Khalfan
    Al-Bahri, Mahmood
    2020 12TH INTERNATIONAL CONGRESS ON ULTRA MODERN TELECOMMUNICATIONS AND CONTROL SYSTEMS AND WORKSHOPS (ICUMT 2020), 2020, : 264 - 268
  • [2] Supervised machine learning algorithms for predicting student dropout and academic success: a comparative study
    Villar A.
    de Andrade C.R.V.
    Discover Artificial Intelligence, 2024, 4 (01):
  • [3] Predicting Student Academic Performance Using Machine Learning
    Ojajuni, Opeyemi
    Ayeni, Foluso
    Akodu, Olagunju
    Ekanoye, Femi
    Adewole, Samson
    Ayo, Timothy
    Misra, Sanjay
    Mbarika, Victor
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT IX, 2021, 12957 : 481 - 491
  • [4] Predicting student success in MOOCs: a comprehensive analysis using machine learning models
    Althibyani, Hosam A.
    PeerJ Computer Science, 2024, 10
  • [5] Predicting student success in MOOCs: a comprehensive analysis using machine learning models
    Althibyani, Hosam A.
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [6] Predicting Student Dropout and Academic Success
    Realinho, Valentim
    Machado, Jorge
    Baptista, Luis
    Martins, Monica V.
    DATA, 2022, 7 (11)
  • [7] Predicting Academic Success of College Students Using Machine Learning Techniques
    Guanin-Fajardo, Jorge Humberto
    Guana-Moya, Javier
    Casillas, Jorge
    DATA, 2024, 9 (04)
  • [8] Predicting Student Success Using Big Data and Machine Learning Algorithms
    Ouatik, Farouk
    Erritali, Mohammed
    Ouatik, Fahd
    Jourhmane, Mostafa
    INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2022, 17 (12): : 236 - 251
  • [9] Predicting the academic progression in student's standpoint using machine learning
    Sassirekha, M. S.
    Vijayalakshmi, S.
    AUTOMATIKA, 2022, 63 (04) : 605 - 617
  • [10] Predicting student specializations: a Machine Learning Approach based on Academic Performance
    Angeioplastis, Athanasios
    Papaioannou, Nikolaos
    Tsimpiris, Alkiviadis
    Kamilali, Angeliki
    Varsamis, Dimitrios
    JOURNAL OF E-LEARNING AND KNOWLEDGE SOCIETY, 2024, 20 (02): : 19 - 27