Natural differential privacy-a perspective on protection guarantees

被引:0
|
作者
Altman, Micah [1 ]
Cohen, Aloni [2 ]
机构
[1] MIT, MIT Lib, CREOS, Cambridge, MA 02139 USA
[2] Univ Chicago, Comp Sci, Chicago, IL USA
关键词
Differential privacy; Physical mechanisms; No free lunch; Privacy by design; Privacy by default;
D O I
10.7717/peerj-cs.1576
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce "Natural" differential privacy (NDP)-which utilizes features of existing hardware architecture to implement differentially private computations. We show that NDP both guarantees strong bounds on privacy loss and constitutes a practical exception to no-free-lunch theorems on privacy. We describe how NDP can be efficiently implemented and how it aligns with recognized privacy principles and frameworks. We discuss the importance of formal protection guarantees and the relationship between formal and substantive protections.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Natural differential privacy—a perspective on protection guarantees
    Altman M.
    Cohen A.
    PeerJ Computer Science, 2023, 9
  • [2] Pairwise Learning with Differential Privacy Guarantees
    Huai, Mengdi
    Wang, Di
    Miao, Chenglin
    Xu, Jinhui
    Zhang, Aidong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 694 - 701
  • [3] Individual Differential Privacy: A Utility-Preserving Formulation of Differential Privacy Guarantees
    Soria-Comas, Jordi
    Domingo-Ferrer, Josep
    Sanchez, David
    Megias, David
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2017, 12 (06) : 1418 - 1429
  • [4] The Politics of Privacy-A Useful Tautology
    Moeller, Johanna E.
    Nowak, Jakub
    Kannengiesser, Sigrid
    Moeller, Judith E.
    MEDIA AND COMMUNICATION, 2020, 8 (02): : 232 - 236
  • [5] Sensitive Disclosures under Differential Privacy Guarantees
    Han, Chao
    Wang, Ke
    2015 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2015, 2015, : 110 - 117
  • [6] PERSONAL PRIVACY-A CASE OF HIGH POLICY
    WEBBER, EW
    PUBLIC ADMINISTRATION REVIEW, 1960, 20 (03) : 158 - 160
  • [7] Computing Tight Differential Privacy Guarantees Using FFT
    Koskela, Antti
    Jalko, Joonas
    Honkela, Antti
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2560 - 2568
  • [8] Laplacian Smoothing Stochastic ADMMs With Differential Privacy Guarantees
    Liu, Yuanyuan
    Geng, Jiacheng
    Shang, Fanhua
    An, Weixin
    Liu, Hongying
    Zhu, Qi
    Feng, Wei
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1814 - 1826
  • [9] Personal Voice Assistant Security and Privacy-A Survey
    Cheng, Peng
    Roedig, Utz
    PROCEEDINGS OF THE IEEE, 2022, 110 (04) : 476 - 507
  • [10] Super-convergence and Differential Privacy: Training faster with better privacy guarantees
    Frisk, Osvald
    Dormann, Friedrich
    Lillelund, Christian Marius
    Pedersen, Christian Fischer
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,