Self-Reconstructed Spinel Surface Structure Enabling the Long-Term Stable Hydrogen Evolution Reaction/Oxygen Evolution Reaction Efficiency of FeCoNiRu High-Entropy Alloyed Electrocatalyst

被引:103
|
作者
Huang, Kang [1 ]
Xia, Jiuyang [1 ]
Lu, Yu [2 ]
Zhang, Bowei [1 ]
Shi, Wencong [3 ]
Cao, Xun [2 ]
Zhang, Xinyue [2 ]
Woods, Lilia M. [4 ]
Han, Changcun [5 ]
Chen, Chunjin [6 ]
Wang, Tian [7 ]
Wu, Junsheng [1 ]
Huang, Yizhong [2 ,5 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Biol Sci, 50 Nanyang Ave, Singapore 639798, Singapore
[4] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[5] Hubei Univ Technol, Coll Sci, Wuhan 430068, Peoples R China
[6] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
[7] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
基金
中国国家自然科学基金;
关键词
atomic lattice hollow sites; high-entropy alloys; overall water splitting; spinel oxide; surface self-reconstruction; WATER OXIDATION;
D O I
10.1002/advs.202300094
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High catalytic efficiency and long-term stability are two main components for the performance assessment of an electrocatalyst. Previous attention has been paid more to efficiency other than stability. The present work is focused on the study of the stability processed on the FeCoNiRu high-entropy alloy (HEA) in correlation with its catalytic efficiency. This catalyst has demonstrated not only performing the simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with high efficiency but also sustaining long-term stability upon HER and OER. The study reveals that the outstanding stability is attributed to the spinel oxide surface layer developed during evolution reactions. The spinel structure preserves the active sites that are inherited from the HEA's intrinsic structure. This work will provide an insightful direction/pathway for the design and manufacturing activities of other metallic electrocatalysts and a benchmark for the assessment of their efficiency-stability relationship.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] High-entropy spinel-structure oxides as oxygen evolution reaction electrocatalyst
    Stenzel, David
    Zhou, Bei
    Okafor, Chukwudalu
    Kante, Mohana Veeraju
    Lin, Ling
    Melinte, Georgian
    Bergfeldt, Thomas
    Botros, Miriam
    Hahn, Horst
    Breitung, Ben
    Schweidler, Simon
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [2] An efficient and stable high-entropy alloy electrocatalyst for hydrogen evolution reaction
    Zhao, Gui
    Lu, Kuan
    Li, Yunan
    Lu, Fagui
    Gao, Peng
    Nan, Bing
    Li, Lina
    Zhang, Yixiao
    Xu, Pengtao
    Liu, Xi
    Chen, Liwei
    CHINESE JOURNAL OF CATALYSIS, 2024, 62 : 156 - 165
  • [3] High-efficiency oxygen evolution reaction: Effect of phosphorus doped on the surface reconstruction of high-entropy spinel oxides
    Bai, Ziming
    Mustafa, Ghulam
    Zhang, Zhe
    Meng, Changgong
    Pan, Yuzhen
    Chen, Zhen
    Ma, Wei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003
  • [4] High-entropy FeCoNiCuAlV sulfide as an efficient and reliable electrocatalyst for oxygen evolution reaction
    Zhao, Yao
    You, Junhua
    Wang, Zhaoyu
    Liu, Guangyi
    Huang, Xiaojuan
    Duan, Mingyi
    Zhang, Hangzhou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 599 - 605
  • [5] A highly efficient high-entropy metal hydroxymethylate electrocatalyst for oxygen evolution reaction
    Jiang, Qi
    Lu, Ruihu
    Gu, Junfeng
    Zhang, Long
    Liu, Kailong
    Huang, Mengyan
    Liu, Peng
    Zuo, Shiyu
    Wang, Yilong
    Zhao, Yan
    Ma, Peiyan
    Fu, Zhengyi
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [6] Quinary RuRhPdPtAu high-entropy alloy as an efficient electrocatalyst for the hydrogen evolution reaction
    Chen, Cheng
    Guo, Jiayin
    Liu, Jianhong
    Li, Weiwei
    Wei, Yongsheng
    Wang, Honghui
    Zhao, Xinsheng
    Wei, Lu
    CHEMICAL COMMUNICATIONS, 2023, 59 (86) : 12863 - 12866
  • [7] High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction
    Zhang, Guoliang
    Ming, Kaisheng
    Kang, Jianli
    Huang, Qin
    Zhang, Zhijia
    Zheng, Xuerong
    Bi, Xiaofang
    ELECTROCHIMICA ACTA, 2018, 279 : 19 - 23
  • [8] Electrodeposition of Self-Supported High-Entropy Spinel Oxides for Stable Oxygen Evolution
    Zhang, Runlin
    Xu, Zijin
    Du, Zhengyan
    Wan, Yichen
    Yuan, Shaojie
    Zeng, Fanda
    Xu, Jian
    Meng, Zeshuo
    Hu, Xiaoying
    Tian, Hongwei
    INORGANIC CHEMISTRY, 2023, 62 (46) : 19052 - 19059
  • [9] Synthesis Framework for Designing PtPdCoNiMn High-Entropy Alloy: A Stable Electrocatalyst for Enhanced Alkaline Hydrogen Evolution Reaction
    Chandran, M. Athira
    Sahoo, Sudeshna
    Singh, Ashutosh K.
    Prasad, Bhagavatula L. V.
    SMALL, 2025, 21 (01)
  • [10] High-Entropy Alloy with Mo-Coordination as Efficient Electrocatalyst for Oxygen Evolution Reaction
    Mei, Yunjie
    Feng, Yuebin
    Zhang, Chengxu
    Zhang, Yue
    Qi, Qianglong
    Hu, Jue
    ACS CATALYSIS, 2022, 12 (17) : 10808 - 10817