PAM-flexible genome editing with an engineered chimeric Cas9

被引:17
|
作者
Zhao, Lin [1 ]
Koseki, Sabrina R. T. [1 ]
Silverstein, Rachel A. [2 ,3 ,4 ]
Amrani, Nadia [5 ]
Peng, Christina [6 ]
Kramme, Christian [7 ]
Savic, Natasha [6 ]
Pacesa, Martin [8 ]
Rodriguez, Tomas C. [5 ]
Stan, Teodora [1 ]
Tysinger, Emma [1 ]
Hong, Lauren [1 ]
Yudistyra, Vivian [1 ]
Ponnapati, Manvitha R. [9 ]
Jacobson, Joseph M. [9 ]
Church, George M. [7 ]
Jakimo, Noah [9 ]
Truant, Ray [6 ]
Jinek, Martin [8 ]
Kleinstiver, Benjamin P. [2 ,3 ,10 ]
Sontheimer, Erik J. [5 ]
Chatterjee, Pranam [1 ,11 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA USA
[3] Massachusetts Gen Hosp, Dept Pathol, Boston, MA USA
[4] Harvard Univ, Biol & Biomed Sci Program, Boston, MA USA
[5] Univ Massachusetts, RNA Therapeut Inst, Sch Med, Cambridge, MA USA
[6] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON, Canada
[7] Harvard Univ, Wyss Inst Biolog Inspired Engn, Cambridge, MA USA
[8] Univ Zurich, Dept Biochem, Zurich, Switzerland
[9] MIT, Media Lab, Cambridge, MA USA
[10] Harvard Med Sch, Dept Pathol, Boston, MA USA
[11] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
CRISPR-CAS9; NUCLEASES; DNA; ENDONUCLEASE; BASE; RECOGNITION; VARIANTS;
D O I
10.1038/s41467-023-41829-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN (R = A or G, Y = C or T) PAM preference, with the N-terminus of Sc + +, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse PAMs and disease-related loci for potential therapeutic applications. In total, the approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] PAM-flexible genome editing with an engineered chimeric Cas9
    Lin Zhao
    Sabrina R. T. Koseki
    Rachel A. Silverstein
    Nadia Amrani
    Christina Peng
    Christian Kramme
    Natasha Savic
    Martin Pacesa
    Tomás C. Rodríguez
    Teodora Stan
    Emma Tysinger
    Lauren Hong
    Vivian Yudistyra
    Manvitha R. Ponnapati
    Joseph M. Jacobson
    George M. Church
    Noah Jakimo
    Ray Truant
    Martin Jinek
    Benjamin P. Kleinstiver
    Erik J. Sontheimer
    Pranam Chatterjee
    Nature Communications, 14
  • [2] High-Throughput Screening of PAM-Flexible Cas9 Variants for Expanded Genome Editing in the Silkworm (Bombyx mori)
    Sun, Le
    Zhang, Tong
    Lan, Xinhui
    Zhang, Na
    Wang, Ruolin
    Ma, Sanyuan
    Zhao, Ping
    Xia, Qingyou
    INSECTS, 2024, 15 (04)
  • [3] Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM
    Masaki Endo
    Masafumi Mikami
    Akira Endo
    Hidetaka Kaya
    Takeshi Itoh
    Hiroshi Nishimasu
    Osamu Nureki
    Seiichi Toki
    Nature Plants, 2019, 5 : 14 - 17
  • [4] PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics
    Acharya, Sundaram
    Ansari, Asgar Hussain
    Das, Prosad Kumar
    Hirano, Seiichi
    Aich, Meghali
    Rauthan, Riya
    Mahato, Sudipta
    Maddileti, Savitri
    Sarkar, Sajal
    Kumar, Manoj
    Phutela, Rhythm
    Gulati, Sneha
    Rahman, Abdul
    Goel, Arushi
    Afzal, C.
    Paul, Deepanjan
    Agrawal, Trupti
    Pulimamidi, Vinay Kumar
    Jalali, Subhadra
    Nishimasu, Hiroshi
    Mariappan, Indumathi
    Nureki, Osamu
    Maiti, Souvik
    Chakraborty, Debojyoti
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] High-Throughput Screens of PAM-Flexible Cas9 Variants for Gene Knockout and Transcriptional Modulation
    Legut, Mateusz
    Daniloski, Zharko
    Xue, Xinhe
    McKenzie, Dayna
    Guo, Xinyi
    Wessels, Hans-Hermann
    Sanjana, Neville E.
    CELL REPORTS, 2020, 30 (09): : 2859 - +
  • [6] Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM
    Endo, Masaki
    Mikami, Masafumi
    Endo, Akira
    Kaya, Hidetaka
    Itoh, Takeshi
    Nishimasu, Hiroshi
    Nureki, Osamu
    Toki, Seiichi
    NATURE PLANTS, 2019, 5 (01) : 14 - 17
  • [7] A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing
    Edraki, Alireza
    Mir, Aamir
    Ibraheim, Raed
    Gainetdinov, Ildar
    Yoon, Yeonsoo
    Song, Chun-Qing
    Cao, Yueying
    Gallant, Judith
    Xue, Wen
    Rivera-Perez, Jaime A.
    Sontheimer, Erik J.
    MOLECULAR CELL, 2019, 73 (04) : 714 - +
  • [8] Efficient Genome Editing in the Mouse Brain by Local Delivery of Engineered Cas9
    Staahl, Brett T.
    Benekareddy, Madhurima
    Coulon-Bainier, Claire
    Banfal, Ashwin A.
    Floor, Stephen N.
    Sabo, Jennifer K.
    Urnes, Cole
    Munares, Gabriela Acevedo
    Ghosh, Anirvan
    Doudna, Jennifer A.
    NEUROTHERAPEUTICS, 2018, 15 (01) : 266 - 266
  • [9] Staphyloccocus aureus Cas9: An Alternative Cas9 for Genome Editing Applications
    Friedland, Ari E.
    Sousa, Alex
    Collins, McKensie
    Maeder, Morgan L.
    Jayaram, Hari
    Welstead, Grant G.
    Gloskowski, Sebastian
    Bumcrot, David
    MOLECULAR THERAPY, 2015, 23 : S224 - S224
  • [10] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648