Deep CNN-Based Planthopper Classification Using a High-Density Image Dataset

被引:2
|
作者
Ibrahim, Mohd Firdaus [1 ,2 ]
Khairunniza-Bejo, Siti [1 ,3 ,4 ]
Hanafi, Marsyita [5 ]
Jahari, Mahirah [1 ,3 ]
Ahmad Saad, Fathinul Syahir [6 ]
Mhd Bookeri, Mohammad Aufa [7 ]
机构
[1] Univ Putra Malaysia, Fac Engn, Dept Biol & Agr Engn, Serdang 43400, Malaysia
[2] Univ Malaysia Perlis, Fac Mech Engn & Technol, Arau 02600, Malaysia
[3] Univ Putra Malaysia, Smart Farming Technol Res Ctr, Serdang 43400, Malaysia
[4] Univ Putra Malaysia, Inst Plantat Studies, Serdang 43400, Malaysia
[5] Univ Putra Malaysia, Fac Engn, Dept Comp & Commun Syst Engn, Serdang 43400, Malaysia
[6] Univ Malaysia Perlis, Fac Elect Engn & Technol, Arau 02600, Malaysia
[7] Malaysian Agr Res & Dev Inst, Engn Res Ctr, Seberang Perai 13200, Malaysia
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 06期
关键词
planthoppers; convolutional neural network; machine vision; paddy cultivation; PESTS; IDENTIFICATION; LOCALIZATION; RECOGNITION; SYSTEM;
D O I
10.3390/agriculture13061155
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rice serves as the primary food source for nearly half of the global population, with Asia accounting for approximately 90% of rice production worldwide. However, rice farming faces significant losses due to pest attacks. To prevent pest infestations, it is crucial to apply appropriate pesticides specific to the type of pest in the field. Traditionally, pest identification and counting have been performed manually using sticky light traps, but this process is time-consuming. In this study, a machine vision system was developed using a dataset of 7328 high-density images (1229 pixels per centimetre) of planthoppers collected in the field using sticky light traps. The dataset included four planthopper classes: brown planthopper (BPH), green leafhopper (GLH), white-backed planthopper (WBPH), and zigzag leafhopper (ZIGZAG). Five deep CNN models-ResNet-50, ResNet-101, ResNet-152, VGG-16, and VGG-19-were applied and tuned to classify the planthopper species. The experimental results indicated that the ResNet-50 model performed the best overall, achieving average values of 97.28% for accuracy, 92.05% for precision, 94.47% for recall, and 93.07% for the F1-score. In conclusion, this study successfully classified planthopper classes with excellent performance by utilising deep CNN architectures on a high-density image dataset. This capability has the potential to serve as a tool for classifying and counting planthopper samples collected using light traps.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deep CNN-based damage classification of milled rice grains using a high-magnification image dataset
    Bhupendra
    Moses, Kriz
    Miglani, Ankur
    Kankar, Pavan Kumar
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 195
  • [2] CNN-based damage classification of soybean kernels using a high-magnification image dataset
    Chauhan, Isparsh
    Kekre, Siddharth
    Miglani, Ankur
    Kankar, Pavan Kumar
    Ratnaparkhe, Milind B.
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2025,
  • [3] Multiclass wound image classification using an ensemble deep CNN-based classifier
    Rostami, Behrouz
    Anisuzzaman, D. M.
    Wang, Chuanbo
    Gopalakrishnan, Sandeep
    Niezgoda, Jeffrey
    Yu, Zeyun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [4] CNN-Based Target Detection and Classification When Sparse SAR Image Dataset is Available
    Bi, Hui
    Deng, Jiarui
    Yang, Tianwen
    Wang, Jian
    Wang, Ling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 6815 - 6826
  • [5] Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models
    Lee, Hoon-Gi
    Pham, Thi-Ngot
    Nguyen, Viet-Hoan
    Kwon, Ki-Ryong
    Lee, Jae-Hun
    Huh, Jun-Ho
    IEEE ACCESS, 2024, 12 : 135104 - 135116
  • [6] CNN-Based Ternary Classification for Image Steganalysis
    Kang, Sanghoon
    Park, Hanhoon
    Park, Jong-Il
    ELECTRONICS, 2019, 8 (11)
  • [7] A CNN-Based Mosquito Classification Using Image Transformation of Wingbeat Features
    Alvaro Luna-Gonzalez, Jose
    Robles-Camarillo, Daniel
    Nakano-Miyatake, Mariko
    Lanz-Mendoza, Humberto
    Perez-Meana, Hector
    KNOWLEDGE INNOVATION THROUGH INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_20), 2020, 327 : 127 - 137
  • [8] CNN-based Large Scale Landsat Image Classification
    Zhao, Xuemei
    Gao, Lianru
    Chen, Zhengchao
    Zhang, Bing
    Liao, Wenzhi
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 611 - 617
  • [9] A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images
    Liu, Huanhua
    Wang, Wei
    Liu, Hanyu
    Yi, Shuheng
    Yu, Yonghao
    Yao, Xunwen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (01): : 459 - 472
  • [10] Image Classification with CNN-based Fisher Vector Coding
    Song, Yan
    Hong, Xinhai
    McLoughlin, Ian
    Dai, Lirong
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,