Dual narrow surface lattice resonances in Si/SiO2 nanopillar dimer arrays

被引:1
|
作者
Huang, Xiaodan [1 ,2 ]
Shao, Guojian [3 ]
机构
[1] Changzhou Vocat Inst Mechatron Technol, Profess Basic Dept, Changzhou 213164, Peoples R China
[2] Southeast Univ, Sch Elect Sci & Engn, Joint Int Res Lab Informat Display & Visualizat, Nanjing 210096, Peoples R China
[3] Nanjing Elect Devices Inst, Nanjing 210016, Peoples R China
关键词
Diffraction waves - Dipole arrays - Dipole resonances - Electric dipole resonance - Lattice resonances - NanoPillar - Nanopillars array - Resonance linewidth - Si/SiO2 - Surface lattice;
D O I
10.1364/JOSAB.484769
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Si/SiO2 nanopillar dimer arrays are proposed to form two narrow surface lattice resonances (SLRs). One (named SLR1) mainly comes from the coupling between single Si/SiO2 nanopillar dimers' electric dipole resonance and arrays' diffraction waves. Another (named SLR2) mainly comes from the coupling between single Si/SiO2 nanopil-lar dimers' magnetic dipole resonance and arrays' diffraction waves. In the array, Si nanopillar dimers are on SiO2 nanopillar dimers, and SiO2 nanopillar dimers are on a quartz substrate. The simulated results reveal that the two SLRs' linewidths can be as small as 2.6 nm. However, for the Si/SiO2 nanopillar array without dimers, only one SLR can be formed. Compared to the SLR of the Si/SiO2 nanopillar array, the SLRs' intensity of the Si/SiO2 nanopil-lar dimer array is stronger and the SLRs' linewidth of the Si/SiO2 nanopillar dimer array is smaller. The Si/SiO2 nanopillar dimers' height and diameter, the gap of dimers, and the arrays' period are all important to regulate the two SLRs. This work is important to the design of micro-nano photonic devices based on multiple SLRs. (c) 2023 Optica Publishing Group
引用
收藏
页码:730 / 735
页数:6
相关论文
共 50 条
  • [1] Fabrication and characterization of SiO2/Si heterogeneous nanopillar arrays
    Wu, Wengang
    Mao, Haiyang
    Han, Xiang
    Xu, Jun
    Wang, Weibing
    NANOTECHNOLOGY, 2016, 27 (30)
  • [2] Multiple surface lattice resonances in symmetric nanocuboid dimer arrays
    Huang, Xiaodan
    Liu, Mengxian
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [3] Surface lattice resonance based on periodic arrays of Si nanopillar dimers
    Huang, Xiaodan
    Wang, Yan
    Zhu, Min
    Ma, Huishu
    Shao, Guojian
    OPTIK, 2022, 266
  • [4] Silicon nanopillar arrays with SiO2 overlayer for biosensing application
    Choudhury, B. Dev
    Casquel, R.
    Banuls, M. J.
    Sanza, F. J.
    Laguna, M. F.
    Holgado, M.
    Puchades, R.
    Maquieira, A.
    Barrios, C. A.
    Anand, S.
    OPTICAL MATERIALS EXPRESS, 2014, 4 (07): : 1345 - 1354
  • [5] Enhanced photoluminescence from CdS with SiO2 nanopillar arrays
    Wei Li
    Shaolei Wang
    Sufeng He
    Jing Wang
    Yanyan Guo
    Yufeng Guo
    Scientific Reports, 5
  • [6] Enhanced photoluminescence from CdS with SiO2 nanopillar arrays
    Li, Wei
    Wang, Shaolei
    He, Sufeng
    Wang, Jing
    Guo, Yanyan
    Guo, Yufeng
    SCIENTIFIC REPORTS, 2015, 5
  • [7] Improvement on Size Uniformity of SiO2 Nanospheres Applied in Si Optical Resonance Nanopillar-arrays
    Peng Xin-Cun
    Wang Zhi-Dong
    Zeng Meng-Si
    Liu Yun
    Zou Ji-Jun
    Zhu Zhi-Fu
    Deng Wen-Juan
    JOURNAL OF INORGANIC MATERIALS, 2019, 34 (07) : 734 - 740
  • [8] Probing Lattice Vibrations at SiO2/Si Surface and Interface with Nanometer Resolution
    Li, Yue-Hui
    Wu, Mei
    Qi, Rui-Shi
    Li, Ning
    Sun, Yuan-Wei
    Shi, Cheng-Long
    Zhu, Xue-Tao
    Guo, Jian-Dong
    Yu, Da-Peng
    Gao, Peng
    CHINESE PHYSICS LETTERS, 2019, 36 (02)
  • [9] Probing Lattice Vibrations at SiO2/Si Surface and Interface with Nanometer Resolution
    李跃辉
    武媚
    亓瑞时
    李宁
    孙元伟
    施成龙
    朱学涛
    郭建东
    俞大鹏
    高鹏
    Chinese Physics Letters, 2019, 36 (02) : 40 - 48
  • [10] Effects of different structural parameters and the medium environment on plasmonic lattice resonance formed by Ag nanospheres on SiO2 nanopillar arrays
    黄小丹
    娄朝刚
    张浩
    杨桦
    ChineseOpticsLetters, 2020, 18 (03) : 79 - 83