Deep learning-based, OceanTDLx sea ice detection model for SAR image

被引:0
|
作者
Lin, Liu [1 ]
Wanwu, Li [1 ]
Hang, Li [1 ]
Yi, Sun [1 ]
机构
[1] Shandong Univ Sci & Technol, Qingdao, Peoples R China
来源
关键词
Polarimetric synthetic-aperture-radar data; Sea ice detection; Model construction; Deep learning; Neural network; SHIP DETECTION; CLASSIFICATION;
D O I
10.51400/2709-6998.2682
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study constructs four deep-learning OceanTDLx series models and uses a WinR-AdaGrad gradient descent al-gorithm to train and optimize the constructed models. Through an analysis of the loss, accuracy, and time consumption of the four models (i.e., OceanTDL2, OceanTDL3, OceanTDL5 and OceanTDL8), we reveal that the models' performance does not improve when the number of layers is increased and that OceanTDL5 provides the optimal performance. OceanTDL5 is compared with OceanTDA9 (a model that we previously constructed), and the curves for training loss_batch and training accuracy_batch indicate that OceanTDL5 is more suitable than OceanTDA9 for detecting distributed targets, particularly semi-melted sea ice, which is intertwined and easily confused with seawater. We process the SAR (Synthetic Aperture Radar) data of the research area and obtain a data set with a 10-m resolution, which is then used to verify the effectiveness of the constructed models for sea ice detection. The results reveal that OceanTDL5 has a detection capacity of approximately 55.6 km2/s and a detection accuracy rate of 97.5%. Compared with traditional ocean target detection methods, OceanTDL5 has greater detection speed and accuracy.
引用
收藏
页码:26 / 39
页数:14
相关论文
共 50 条
  • [1] A Deep Learning-Based SAR Ship Detection
    Yu, Chushi
    Shin, Yoan
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 744 - 747
  • [2] Machine Learning-Based Detection of Icebergs in Sea Ice and Open Water Using SAR Imagery
    Jafari, Zahra
    Bobby, Pradeep
    Karami, Ebrahim
    Taylor, Rocky
    REMOTE SENSING, 2025, 17 (04)
  • [3] MACHINE LEARNING-BASED IMAGE DETECTION OF DEEP-SEA SEAMOUNTS CREATURES
    Liu, Aiyue
    Li, Xiaofeng
    Xu, Kuidong
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5735 - 5737
  • [4] deSpeckNet: Generalizing Deep Learning-Based SAR Image Despeckling
    Mullissa, Adugna G.
    Marcos, Diego
    Tuia, Devis
    Herold, Martin
    Reiche, Johannes
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] A survey on deep learning-based image forgery detection
    Mehrjardi, Fatemeh Zare
    Latif, Ali Mohammad
    Zarchi, Mohsen Sardari
    Sheikhpour, Razieh
    PATTERN RECOGNITION, 2023, 144
  • [6] Deep learning-based image forgery detection system
    Suresh, Helina Rajini
    Shanmuganathan, M.
    Senthilkumar, T.
    Vidhyasagar, B. S.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 160 - 172
  • [7] A deep learning-based bias correction model for Arctic sea ice concentration towards MITgcm
    Yuan, Shijin
    Zhu, Shichen
    Luo, Xiaodan
    Mu, Bin
    OCEAN MODELLING, 2024, 188
  • [8] Deep Learning-based Resolution Enhancement in SAR Image for Automotive Radar Sensors
    Kang, Sung-wook
    Cho, Hahng-Jun
    Lee, Hojung
    Lee, Seongwook
    2023 IEEE SENSORS, 2023,
  • [9] SEA ICE AND OPEN WATER CLASSIFICATION OF SAR IMAGES USING A DEEP LEARNING MODEL
    Ren, Yibin
    Xu, Huan
    Liu, Bin
    Li, Xiaofeng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3051 - 3054
  • [10] Deep Learning-Based Seasonal Forecast of Sea Ice Considering Atmospheric Conditions
    Zhu, Yilin
    Qin, Mengjiao
    Dai, Panxi
    Wu, Sensen
    Fu, Zhiyi
    Chen, Zhende
    Zhang, Laifu
    Wang, Yuanyuan
    Du, Zhenhong
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2023, 128 (24)