On some estimates involving Fourier coefficients of Maass cusp forms

被引:0
|
作者
Sun, Qingfeng [1 ]
Wang, Hui [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Maass cusp form; exponential sums; Fourier coefficients; SUMS; SUBCONVEXITY; SUMMATION; SQUARE;
D O I
10.1142/S1793042123500495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a Hecke-Maass cusp form for SL2(Z) with Laplace eigenvalue lambda(f)(Delta) = 1/4+mu(2) and let lambda(f)(n) be its nth normalized Fourier coefficient. It is proved that, uniformly in alpha,beta is an element of R, Sigma(n <= X)lambda(f)>ne(alpha n(2)+beta n) << X7/8+epsilon lambda(f)(Delta)(1/2+epsilon), depends only on epsilon. We also consider the summation function of lambda(f) (n) and under the Ramanujan conjecture we are able to prove Sigma(n <= X)lambda(f)(n) << X1/3+epsilon lambda(f)(Delta)(4/9+epsilon )the implied constant depending only on epsilon.
引用
收藏
页码:997 / 1019
页数:23
相关论文
共 50 条