Robust Estimation of the Microstructure of the Early Developing Brain Using Deep Learning

被引:4
|
作者
Kebiri, Hamza [1 ,2 ,3 ,4 ,5 ]
Gholipour, Ali [4 ,5 ]
Lin, Rizhong [6 ]
Vasung, Lana [5 ,7 ]
Karimi, Davood [4 ,5 ]
Cuadra, Meritxell Bach [1 ,2 ,3 ]
机构
[1] CIBM Ctr Biomed Imaging, Lausanne, Switzerland
[2] Lausanne Univ Hosp CHUV, Dept Radiol, Lausanne, Switzerland
[3] Univ Lausanne UNIL, Lausanne, Switzerland
[4] Boston Childrens Hosp, Dept Radiol, Computat Radiol Lab, Boston, MA 02115 USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Ecole Polytech Fed Lausanne EPFL, Signal Proc Lab 5 LTS5, Lausanne, Switzerland
[7] Boston Childrens Hosp, Dept Pediat, Boston, MA USA
基金
瑞士国家科学基金会; 美国国家卫生研究院;
关键词
DIFFUSION MRI; DENSITY;
D O I
10.1007/978-3-031-43990-2_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion Magnetic Resonance Imaging (dMRI) is a powerful non-invasive method for studying white matter tracts of the brain. However, accurate microstructure estimation with fiber orientation distribution (FOD) using existing computational methods requires a large number of diffusion measurements. In clinical settings, this is often not possible for neonates and fetuses because of increased acquisition times and subject movements. Therefore, methods that can estimate the FOD from reduced measurements are of high practical utility. Here, we exploited deep learning and trained a neural network to directly map dMRI data acquired with as low as six diffusion directions to FODs for neonates and fetuses. We trained the method using target FODs generated from densely-sampled multiple-shell data with the multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD). Detailed evaluations on independent newborns' test data show that our method achieved estimation accuracy levels on par with the state-of-the-art methods while reducing the number of required measurements by more than an order of magnitude. Qualitative assessments on two out-of-distribution clinical datasets of fetuses and newborns show the consistency of the estimated FODs and hence the cross-site generalizability of the method.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 50 条
  • [1] The developing brain and early learning
    Klass, PE
    Needlman, R
    Zuckerman, B
    ARCHIVES OF DISEASE IN CHILDHOOD, 2003, 88 (08) : 651 - 654
  • [2] Robust camera pose estimation by viewpoint classification using deep learning
    Nakajima Y.
    Saito H.
    Computational Visual Media, 2017, 3 (2) : 189 - 198
  • [3] Robust camera pose estimation by viewpoint classification using deep learning
    Yoshikatsu Nakajima
    Hideo Saito
    ComputationalVisualMedia, 2017, 3 (02) : 189 - 198
  • [4] Deep learning microstructure estimation of developing brains from diffusion MRI: A newborn and fetal study
    Kebiri, Hamza
    Gholipour, Ali
    Lin, Rizhong
    Vasung, Lana
    Calixto, Camilo
    Krsnik, Zeljka
    Karimi, Davood
    Cuadra, Meritxell Bach
    MEDICAL IMAGE ANALYSIS, 2024, 95
  • [5] Robust local slope estimation by deep learning
    Zu, Shaohuan
    Cao, Junxing
    Fomel, Sergey
    Yang, Liuqing
    Saad, Omar M.
    Chen, Yangkang
    GEOPHYSICAL PROSPECTING, 2022, 70 (05) : 847 - 864
  • [6] ROBUST LEARNING FOR DEEP MONOCULAR DEPTH ESTIMATION
    Irie, Go
    Kawanishi, Takahito
    Kashino, Kunio
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 964 - 968
  • [7] Classification of brain tumor using deep learning at early stage
    Smitha, P.S.
    Balaarunesh, G.
    Sruthi Nath, C.
    Sabatini S, Aminta
    Measurement: Sensors, 2024, 35
  • [8] Brain microstructure reconstruction based on deep learning
    Xie Q.
    Chen X.
    Shen L.
    Li G.
    Ma H.
    Han H.
    Han, Hua (hua.han@ia.ac.cn), 2018, Systems Engineering Society of China (38): : 482 - 491
  • [9] A Deep Learning Framework for Robust DOA Estimation Using Spherical Harmonic Decomposition
    Varanasi, Vishnuvardhan
    Gupta, Harshit
    Hegde, Rajesh M.
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 1248 - 1259
  • [10] Robust estimation of the number of coherent radar signal sources using deep learning
    Rogers, John
    Ball, John E.
    Gurbuz, Ali C.
    IET RADAR SONAR AND NAVIGATION, 2021, 15 (05): : 431 - 440